

Making O₂ and figuring out its density

<u>Purpose</u>

- ✓ Accumulate O₂ produced by the decomposition of KClO₃
- ✓ Calculate the density of O₂ and its molecular weight
- * decomposition: 分解

Making O2 and figuring out its density

decomposition of KClO₃

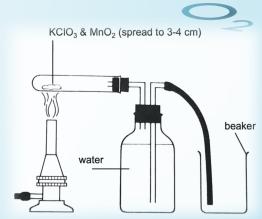
Chemical reaction formula

$$\begin{array}{c}
2 \text{ KClO}_{3}(s) \xrightarrow{\text{Heat}} & 2 \text{KCl}(s) + 3 O_{2}(g) \\
\text{Potassium Chloride} & Oxygen
\end{array}$$

What is this?
Why is it here?

Making O2 and figuring out its density

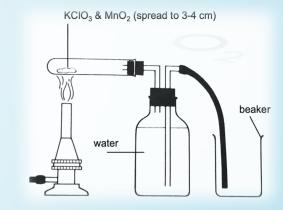
$$\xrightarrow{\text{Heat}}$$
 2Ko


$$\rightarrow$$
 2KCl(s) + 3O₂(g)
Potassium Chloride Oxygen

Catalyst

a substance that increases the rate of a chemical reaction without itself undergoing any permanent chemical change.

* catalyst: 触媒


Experimental procedure (1)

1. Weigh a g KClO₃ with an analytical balance

- 2. Assemble experimental set as the right up figure.
- 3. Heat the test tube properly.
- 4. Wait till the reaction is over and cool down.

Try2. 酸素の捕集と密度の測定 Making O₂ and figuring out its density

Experimental procedure(2)

- 5. Keep water level at the same height and take off the rubber hose. Measure water in beaker **b** cm³.
- 6. Weigh the test tube c g.
- 7. Check RT († °C) and air pressure (P mmHg)
 - * RT: Room Temperature

Making O2 and figuring out its density

Q1 Chemical equation

$$\begin{array}{ccc}
2 \text{ KClO}_3(s) & \xrightarrow{\text{Heat}} & 2 \text{KCl}(s) & + & 3 \text{O}_2(g) \\
\text{Potassium Chloride} & & \text{Oxygen}
\end{array}$$

Q2 Why keep the water surface at the same height?

Inside pressure above water = outside pressure above water

Q3 What is the function (role) of MnO₂?

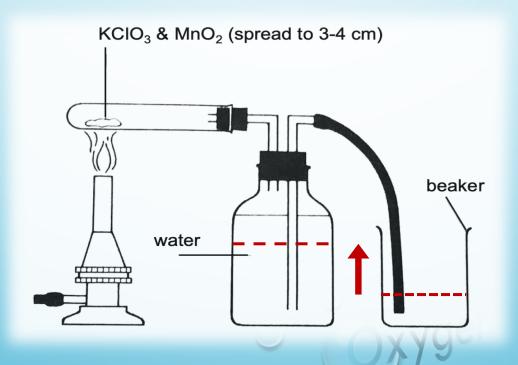
It works as a catalyst

Making O2 and figuring out its density

$$\begin{array}{c}
2 \text{ KClO}_3(s) \xrightarrow{\text{Heat}} & 2 \text{KCl}(s) + 3 O_2(g) \\
\text{Potassium Chloride} & Oxygen
\end{array}$$

Reactant 反応物 Products 生成物

---rate: xx塩


---ride: xx化物

Making O2 and figuring out its density

Q2 Why keep the water surface at the same height?

Inside pressure above water = outside pressure above water

It works as a catalyst

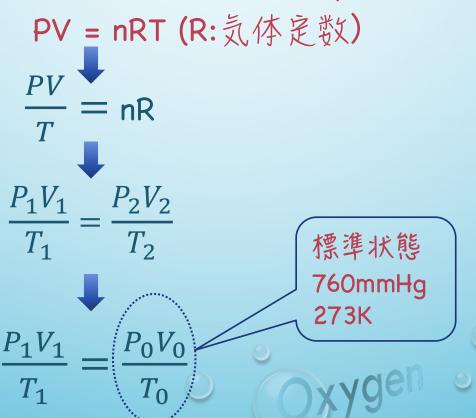
Catalyst

- > increases the rate of a chemical reaction
- > itself doesn't have any change after reaction

Attention: catalyst does contribute (join) to the chemical reaction. So you can not say "反応に参加していない".

Try2. 酸素の捕集と密度の測定 Making O₂ and figuring out its density

Data


Mass of test tube before reaction (a g)	9
Mass of test tube after reaction (c g)	g
Volume of water in the beaker (b cm³)	cm ³
Room temperature († °C)	°C
Atmospheric pressure (P mmHg)	mmHg
Saturated vapor pressure of water at RT PH₂O	mmHg

Making O2 and figuring out its density

理想気体

Relationship between P, V & T for an ideal gas

P: pressure, V: volume, T: temperature

Making O2 and figuring out its density

$$V_0 = \frac{P_1 V_1}{T_1} \times \frac{T_0}{P_0} = V_1 \times \frac{P_1}{P_0} \times \frac{T_0}{T_1}$$

$$V_0 = V \times \frac{P - P_{H_2O}}{760} \times \frac{273}{273 + t}$$

$$P_1 = P - P_{H_2O}$$

 $P_0 = 760 \text{ mmHg}$
 $T_0 = 273 \text{ K}$
 $T_1 = 273 \text{ K} + t$
 $V_1 = V = b \text{ cm}^3$

Try2. 酸素の捕集と密度の測定 Making O₂ and figuring out its density

PH₂o: Saturated Vapor Pressure of Water (mmHg) 飽和水蒸気圧

Temp.	0	1	2	3	4	5	6	7	8	9
10°C	9.21	9.84	10.52	11.23	11.99	12.79	13.63	14.53	15.48	16.48
20°C	1 <i>7</i> .54	18.65	19.83	21.07	22.33	23.76	25.21	26.74	28.35	30.04
30°C	31.82	33.70	35.66	37.73	39.90	42.18	44.56	47.07	49.69	52.44

Q: Find out the value of saturated vapor pressure of water at 23°C

Making O2 and figuring out its density

$$\begin{array}{ccc} 2 \text{ KClO}_3(s) & \xrightarrow{\text{Heat}} & 2 \text{KCl}(s) & + & 3 \text{O}_2(g) \\ \text{Potassium Chloride} & & \text{Oxygen} \end{array}$$

Calculate the mass of 1L O2 under standard condition

$$density = \frac{Mass}{Volume}$$
 (g/cm³) In this experiment: (g/L)

Mass of
$$O_2 = a - c$$
 (g)

$$a - c = 0$$

$$V_{O_2} = V_{water} = \mathbf{b} (\text{cm}^3)$$

$$V_{O_2} = V_{water} = b \text{ (cm}^3)$$
 $V_0 = V_{O_2} \times \frac{P - P_{H_2O}}{760} \times \frac{273}{273 + t}$

density
$$d = \frac{a-c}{V_0} \times 1000^\circ$$

 cm^3

Why x1000 ?

1L=1dm3=1000cm3

Molecular weight

The volume for 1 molar ideal gas at standard condition can be calculated by the ideal gas equation

$$\frac{V}{n} = \frac{RT}{P}$$
 $V = \frac{RT}{P} \approx 0.082 \times 273 = 22.38 \approx 22.4L$

Therefore,

Molecular weight of O2

$$Mo_2$$
 = density(g/L) X 22.4L = d (g/L) X 22.4L

Making O₂ and figuring out its density

What is the molecular theoretical weight of O₂?

There are two oxygen atoms in one oxygen molecule Atomic weight of oxygen: 16 Therefore molecular weight of O_2 : 2x16=32

Discussion

$$error = \frac{measured\ value\ -\ theoretical\ value\ }{theoretical\ value} \times 100$$

$$= \frac{M_{O_2} - 32}{32} \times 100$$

What is the reason for the error?

