2005年度

応用数学

 


科目名:

  応用数学(Applied Mathematics

  1単位 必修 4年物質工学科 通年 講義

担当教員:

  河島 博(控室:管理棟3階一般科事務室(金曜日)・内線193

授業目的:

  求積法を中心にして、2階定数係数線形微分方程式の解法を学ぶ。

達成目標:

  1.微分方程式の基本的な概念を説明できること。

  2.変数分離形・同次形・1階線形など1階の基本的な微分方程式が解けること。

  3.定数係数線形微分方程式を中心に2階の基本的な微分方程式が解けること。

 

  技術者教育プログラムの学習・教育目標:(A)

  JABEE基準1の(1)との関係:(c)

 

教科書:

  田河生長 他「微分積分�」(大日本図書)

参考書:

  田河生長 他「微分積分問題集」(大日本図書)

 

授業内容:

  ●前期末試験までの14週 ( )内の数字は教科書のページ

  ○微分方程式と解(p.101116

   微分方程式の意味/微分方程式の解/変数分離形/同次形/

   1階線形微分方程式/完全微分方程式

  ◎前期末試験

  ●学年末試験までの14週

  ○2階微分方程式(p.119135

   線形微分方程式/定数係数斉次2階線形微分方程式/

   定数係数非斉次2階線形微分方程式/いろいろな2階線形微分方程式/

   2階非線形微分方程式

  ◎学年末試験

 

評価方法:

  評価は下記2項目の加重平均による

  1.定期試験(80%)

  2.課題・小テストなどの解答内容(20%)

連絡事項:

  1.授業方法は講義を中心として適宜課題や小テストを与える。

  2.学習方法としては、

    予習-事前に教科書に目を通し、疑問点を明確にしておく。

    授業-講義内容や板書の内容をノートに整理して理解する。

       理解できない点は随時質問する。授業中に与えられた課題を解く。

    復習-教科書やノート等を参考にして授業内容を確認しておく。

       課題等は勿論のこと、教科書の練習問題や問題集の問題を解いてみる。

  3.定期試験実施方法について、前期末、学年末の2回実施。

    時間は原則として50分(場合により90分とすることがある)また原則的として、

    筆記用具以外の持ち込みを認めない。(持ち込み許可物は予め連絡する)

    なお、不正行為に関しては本校規程に従って対応する。

  4.2年3年の微分積分学・解析学が特に基礎となるので、よく復習しておくこと。

  5.本校数学科教員6人は、担当科目に関わらず数学に関する質問を受け付けるので

    放課後等を利用して、在室している教員に随時相談すること。

    研究室:岡部(→専攻科棟3階)・新井・佐藤・須甲(→専攻科棟1階)

        玉木(→電子制御工学科棟1階)・島田(→機械工学科棟3階)