科目名	応用物理 I	英語科目名	Applied Physics I	
開講年度・学期	平成26年度 ・通年	対象学科・専攻・学年	物質工学科3年	
授業形態	講義	必修 or 選択	必修	
単位数	2 単位	単位種類	履修単位(60h)	
担当教員	橋本 誠司 (非常勤)	居室(もしくは所属)	群馬大学工学部電気電子工学科	
電話	群馬大学工学部電気電子	E-mail	hashimotos@群馬大学ドメイン	
	工学科			
		授業の到達目標		
授業の到達目標			小山高専の 学習・教育到 JABEE 基準	

	授業の到達目標		
授業の到達目標	小山高専の 教育方針	学習·教育到 達 目 標 (JABEE)	JABEE 基準
1. 自然界に存在している基礎的な物理現象を知っている。	3		
2. 上記の現象を説明する基礎的な物理法則を知っている。	3		
3.上記の物理法則を用いて,基礎的な問題を解くことが出来る。	3		

各到達目標に対する達成度の具体的な評価方法

到達目標1~3について

前期および後期の中間試験と期末試験の成績、課題提出物、学習到達度試験の成績等によって評価する。

評価方法

下記3項目の加重平均によって行う。(1を8割程度,2~3を2割程度)

- 1. 前期中間,前期末、後期中間、後期末の各試験
- 2. 演習や課題に対する解答、レポート等提出物
- 3. 国立高専学習到達度試験

授業内容

前期

- 1. 電荷と静電気力(2週)
- 2. 電場の性質 (2週)
- 3. 電位とエネルギー(2週)

前期中間試験(1週)

- 4. コンデンサー(2週)
- 5. 電気抵抗 (2週)
- 6. キルヒホッフの法則(3週)

前期期末試験

答案返却と説明(1週)

後期

- 7. 磁場の性質 (2週)
- 8. 電流と磁場 (2週)
- 9. 電磁力 (2週)

後期中間試験(1週)

- 10. 電磁誘導(4週)
- 11. 誘導起電力(3週)

後期期末試験

答案返却と説明(1週)

キーワード	静電気力,電場,電位,電流,磁場,電磁力		
教科書	初歩から学ぶ基礎物理学 電磁気・原子 柴田洋一他 大日本図書		
参考書	1. 電磁気・原子問題集 柴田洋一他 大日本図書		
	┃ 2.問題集 フォローアップドリル物理-雷気- 数研出版		

カリキュラム中の位置づけ

前年度までの関連科目	物理,数学
現学年の関連科目	数学,専門科目
次年度以降の関連科目	応用物理,数学,専門科目

連絡事項

この科目に関する問い合わせは、物理柴田へ。

授業中の演習問題は必ず自分で解くこと。自宅に帰ってからは、必ず教科書を読み、問題集を自分で解くこと。問題を解くときには、公式の丸暗記や、解ければいいという方法ではいけない。教科書を読んでその式が出てきた理由を理解してから、問題にあたること。

シラバス作成年月日 平成 26 年 3 月 31 日