周波数推定法に関する研究

A Study of the Method of Estimating Frequency

電子システム工学専攻 石山 亮 (指導教官:久保 和良)

<u>1,はじめに</u>

正弦波の標本値から周波数を推定する Prony法と Binary法による周波数推定器実現のため、現在まで に標本値への雑音混入による周波数推定誤差につい てシミュレーションと検討を行ってきた。¹⁾

今回は Prony 法周波数推定器を製作し、周波数推 定誤差の検討を行った。また、Binary 法で雑音耐性 の向上が図れるアルゴリズムを考案し、シミュレー ションにより検討を行った。

2,原理

<u>2-1 周波数推定法</u>

正弦波の標本値は、周波数をf、標本化周波数を f_s 、標本化番号をn、振幅をA、位相を、直流成分をdとすると次式で表される。

$$x(n) = A\cos(2 fn/fs +) + d$$
(1)

Prony 法では、n = 0, 1, 2, 3の4点の標本値から定数a、 Z_r を計算し周波数推定値 f_e を求めることができる。

$$a = \frac{x(0) - x(3)}{x(1) - x(2)} \tag{2}$$

$$Z_r = (a - 1)/2$$
 (3)

$$f_e = f_s \left\{ \arg \left(Z_r + j \sqrt{1 - Z_r^2} \right) \right\} / 2$$
 (4)

Binary法は、 f_s を変えながら逐次的に標本化を行 い、最終的に $f_s=4f$ に近づけながら周波数を推定する。 まず標本化密度 k を次式で定義する。特に推定開始 時の標本化密度を k_c とする。

$$k = f_s / (2f) \tag{5}$$

(2)(3)式を変形すると、

$$Z_r = \frac{x(3) - x(2) + x(1) - x(0)}{2\{x(2) - x(1)\}} = \cos(-k)$$
(6)

となり、 Z_r は k=2 の時に正負が反転する。標本化、 Z_r の正負判定を繰り返し、2進数のビット列 $B = (0.b_1b_2b_3...b_p)$ を逐次決定する。最終的に k=2 に漸近し た標本化周波数 f_s 、初回標本化周波数 f_c 、と次式か ら周波数推定値 f_e を求める。

$$f_s' = f_c \cdot B \tag{7}$$

$$f_e = f_s' / 4 = f_c \cdot B / 4$$
 (8)

シミュレーション時は、雑音として一様乱数を標本値に重畳し、正弦波と雑音の振幅比を雑音比率*nr*とした。これを一定にし周波数推定を100回行った。 また、実際の周波数推定も同条件で周波数推定を 100回行い、その推定値の平均と真値の相対誤差を 誤差率とした。

<u>2 - 2 Prony 法による周波数推定器</u>

Prony 法を用いた周波数推定器はTI社製DSP スターターキット(以下、DSKとする)を用いて 製作した。6桁の表示器での周波数推定値の表示、 プログラムを格納したROMでのスタンドアロン化、 外部メモリとDSKのデバッガによる周波数推定値 と推定に用いたパラメータの記録などが行えるよう に回路を拡張した。

<u>3 , 結果と考察</u>

<u>3 - 1 Prony 法による周波数推定器</u>

製作した周波数推定器の概観を **Fig.1** に示す。これを用いて、振幅Aと標本化密度 k を変えた正弦波の周波数推定、ならびにその誤差率の検討を行った。

A = 1.0[V]、k = 1~5 で正弦波の周波数を推定し た結果を**Fig.2** に示す。k 2.5 の場合に誤差率が小 さくなり、最小で約0.005 となった。k が小さいと 標本値同士の値が大きく開くため精度よい推定がで き、この様な結果になったと考えられる。しかし、kの値をそれ以上小さくしても、誤差率の改善が見ら れなかった。これは、標本化を行った位相によって、 相対的に標本値同士の値の差が小さくなり、大きい 周波数推定誤差が発生したためである。標本化を行 う位相は選ぶことができないため、この大きな誤差 率により誤差率の減少が進まなかったと考えられる。

また、誤差率の原因としてA / D変換器の量子化 誤差も考えられる。そこで、振幅の増大により、含 まれる量子化誤差や雑音成分が相対的に小さくなれ ば、誤差率が減少すると考え、A = 0.5~3.0[V]、k = 5 に固定して周波数推定を行った。

その結果を Fig.3 に示すが、結果として振幅による大きな誤差率の変化は見られなかったため、使用する A / D変換器の量子化ビット数は十分であり、

誤差の原因は量子化誤差や標本値に重畳した雑音に よるものではなかったと考えられる。理論上、周波 数を推定する場合は振幅の影響を受けないため、理 論に沿った周波数推定を行っていると確認できた。

従って、誤差率の発生は入力した正弦波のひずみ によって発生していると考えられる。

<u>3-2</u> Binary 法の雑音耐性の向上

Binary 法では**Fig.4** に示すように、周波数推定時 の雑音比率の増加と k_c の値により、2 段階の誤差率 の上昇が生じ、その時のBが**Fig.5** のように変化す ることを確認している¹⁾。よって、Bの変動が小さ くなるよう k_c を変えて周波数推定を繰り返せば、雑 音耐性のある推定が可能と考えられる。

そこで k_c = 50 とし、8 点の標本値から2 つの Bを 求め、その差が±0.0001 になるまで f_sを 1/20 ずつ下 げながら Bを繰り返し求める操作を加えた周波数推 定方法をシミュレーションした。

その結果を Fig.6 に示す。これにより2回目の誤 差率上昇の抑制と、一桁の誤差率改善ができた。部 分的に誤差率の上昇が生じるのは、2つのBが真値 と異なっても、差が0.0001以下となり上記の操作が 効かなかったためと考えられる。

また、標本化周波数を下げる割合を変え、1/10 に とると、誤差率の変動は抑えられたが、全体的な誤 差率は大きくなってしまった。これは、標本化周波 数を減らす割合が大きいため、最適な標本化周波数 を逃してしまうためと考えられる。逆に1/20 の場合 では、標本化周波数を減らす割合が小さいため最適 な標本化周波数になる可能性は大きいが、その値に なるまでに2つのBの差が0.0001 になり、結果的に 真のBから外れ、誤差率の原因になったと考えられ る。

<u>4,まとめ</u>

<u>4-1 Prony 法による周波数推定器</u>

Prony 法では、最良で誤差率約0.005 で周波数推 定を行うことができた。また、その誤差率は量子化 誤差や標本値に重畳した雑音が原因でないこともわ かった。残る原因として、入力した正弦波そのもの の歪と標本化を行った位相が挙げられる。Prony 法 は、そのアルゴリズムから標本化を行った初期位相 を求められるため、これを用いて標本化を行う位相 を選択することで、誤差率の改善ができると考えら れる。

<u>4-2 Binary 法の雑音耐性の向上</u>

Binary 法は、周波数推定に用いる標本値の量から、 Prony 法より多くの情報をえることができる。それ により、Prony 法より雑音耐性がある周波数推定が できるが、今回は Binary 法の欠点であった、雑音 による誤差率の2段階上昇を抑えることができた。

参考文献

 1)石山 亮,久保和良:周波数推定法に関する研究,平成12年度小山工業高等専門学校電子制御工 学科卒業研究中間発表会抄録集,S1(2000,10)
2)井 研治,野呂雄一,服部昭三:Prony法の周 波数推定アルゴリズムに及ぼす雑音の影響,日本音
響学会誌,42,11,853/859(1986)

Fig.1 Developed frequency-estimator.

Fig.3 Errors in estimated frequency

against Amplitude.

Fig.2 Errors in estimated frequency against Sampring density.

Noise Ratior

Fig.4 Errors in stimated frequency against Noise ratio by Binary Method

Fig.5 Final values of *B* against Noise ratio by Binary Method.

Fig.6 Errors in estimated frequency against Noise ratio by Binary Method with reducing fs.