(学-1) 自学自習の記入の必要がある科目:本科学修及び専攻科の講義演習(授業内容部分に罫線あり 16 週分)

(于 1) 百十百百00亿人00000000000000000000000000000000					X=271 /
科目名	デジタル工学	英語科目名	Digital te	chnology	
開講年度・学期	平成23年度・後期	対象学科・専攻・学年	電子制御工学科 5年		
授業形態	講義	必修 or 選択	選択		
単位数	2単位	単位種類	履修単位(30h)		
担当教員	西野 聰	居室(もしくは所属)	電子制御工学科 4 階		
電話	0285-20-2262	E-mail	nishino@oyama-ct.ac.jp		
授業の達成目標			授業達成目標との対応		
			小山高専の	学習・教育	JABEE 基準
			教育方針	目標(JABEE)	要件
達成目標:			1 2	(B-3)	(b) (d) (e)
1. Verilog-HDL の基本文法が説明できる。				(C-1)	
2.Verilog-HDLにより基本論理回路が記述できる。]
3. Verilog-HDL を使用して LSI を設計できる基礎力が身に付く。					
4. Verilog-HDL により、簡単な回路設計とシミュレーションがで					
きる。					
* 前半の数週は特許教育も行う。					1

各達成目標に対する達成度の具体的な評価方法 試験での評点(下記 1,2 の割合)が 60%以上で達成とする。

評価方法

- 1. 期末試験(60%)
- 2. 実習の達成度(40%)と調査発表の結果で行う。 試験における参考書、コピー、携帯電話、電卓、ノート、メモ等の持ち込みは不可。

授業内容	授業内容に対する自学自習項目	自学自習時間
1. Verilog-HDL の文法の調査学習とその 発表会	Verilog-HDL と VHDL の違い	4
2. Verilog-HDL の文法の調査学習とその 発表会	モジュール記述と構造について	4
3. Verilog-HDL の文法の調査学習とその 発表会	各宣言について	4
4. Verilog-HDL の文法の調査学習とその	Function について	4
発表会 5. Verilog-HDL の文法の調査学習とその	If 文の使用法	4
発表会 6. Verilog-HDL の文法の調査学習とその	case 文の使用法	4
発表会 7. Verilog-HDL による回路設計の実習-(2	Always, define 文の使用法	4
(前期中間試験)		
8. Verilog-HDL による回路設計の実習-(2週)	8 ビット乗算器	4
9. Verilog-HDL による論理合成の実習-(4 週)	8 ビット加算器と減算器	4
10. Verilog-HDL による論理合成の実習-(4	同期式カウンタ	4
週) 11. Verilog-HDL による論理合成の実習-(4 週)	8 ビット比較器	4
12. Verilog-HDL による論理合成の実習	除算器	4
13. Verilog-HDL によるシミュレーションの実習	マルチプレクサ	4
14. Verilog-HDL によるシミュレーション	減算カウンタ	4
の実習 15. Verilog-HDL によるシミュレーション	機能記述の構造記述	4

の実習						
		自学自習時間合計	<u>6 0</u>			
キーワード	RTL 設計、インスタンス化					
教科書	教科書:使用しない。適時プリントを配布。					
参考書	1. 深山、北川、鈴木「HDL による VLSI 設計・第2版」共立出版(2002)					
	2. 並木、前田、宮尾「実用入門・ディジタル回路と Verilog-HDL」技術評論社(2000)					
カリキュラム中の位置づけ						
前年度までの関連科目		論理回路 I、II				
現学年の関連科目		情報工学				
次年度以降の関連科目		電子回路特論				
連絡事項						
1. 授業は調査発表→実習のくり返し行う						
2. 発表会と実習が授業時間の 80%となる。						
3. 実習は当研究室の学生が取りまとめる。場所は電子計算機室等で行う。						
4. 期末試験は 30 分で行い、筆記用具以外の持ち込みは禁止とする。						
シラバス作成年月日 平成 23 年 3 月 17 日						