(学-1) 自学自習の記力	へ の必要がある科目:本科学	ዾ修及び専攻科の講義演習	」(授業内容部	分に罫線あり	16 调分)
科目名	制御工学Ⅲ	英語科目名	Control Engineering III		
 開講年度・学期	平成 22 年・前期	対象学科・専攻・学年	電子制御工学科5年		
授業形態	講義単位	必修 or 選択	選択		
単位数	2 単位	単位種類	学習単位 (30+60h)		
担当教員	笠原雅人	居室(もしくは所属)	電子制御工学科棟4階		
電話	0285-20-2263	E-mail	kasahara@oyama-ct.ac.jp		
			授業達成目標との対応		
授業の達成目標					JABEE 基準
1. 離散時間システムの安定性を説明できること 2. 達関数から状態方程式への変換ができること					
	7. 状態観測器の簡単な設計				
4. レギュレータ. サ	ーボ系が説明できること.				
· ·	成度の具体的な評価方法				
達成目標1~4:試験での関連問題について60%以上の成績で達成とする.					
 評価方法 2回の試験(各90分)の相加平均で評価する.試験における参考書、コピー、携帯電話、電卓、ノート、メモ等の					
持ち込みは不可.					
授業内容		授業内容に対する自学自習項目			自学自習時間
1. 離散時間システムの応答と安定性		連続時間システム(1, め、安定性を確認する.			4
		散時間システムに直し、安定性を確認する.			
2. 離散時間システムの安定性(Jury の安定判		第3章の演習問題を行う、5次の離散時間システムの特性方程式をつくり、安定判別を行う.			4
別)		漸近安定について調べる.			4
3. 離散時間システムの安定性 4. 可制御性と可観測性		可制御性と可観測性の定義を調べる.			4
5. システムの対角化		3×3の状態方程式で示されるシステムを設定			4
o. DATAONALI		し、伝達関数を求める、また、このシステムの可制御性、可観測性を確認する。			·
6. 伝達関数から状態方程式への変換		パルス伝達関数 (3次系) で示されるシステムを 設定し, 可制御正準形, 可観測正準形に変形する.			4
7. 状態方程式の正準形への変換		伝達関数を設定し、可制御正準形になおし、行列 4 を用いて可観測正準形に変形する.			4
8.状態方程式からブロック線図		状態方程式 (3×3) を設定し、ブロック線図に変形する。			4
9. 状態フィードバック(極配置問題)		状態方程式を設定し、適切な極を与え、状態フィードバックゲインを決定する.			4
10. 状態フィードバック(デッドビート制御)		状態方程式を設定し、デッドビート制御のゲイン を設計する.			4
11. 状態観測器		状態方程式を設定し、状態観測器を設計する.			4
12. リカッチ方程式		リカッチ方程式を導出する. また, リカッチ方程式の解法について調べる.			4
13. 最適レギュレータ		状態方程式を設定し、適切な極を与え、状態観測器、最適レギュレータの設計を行う。			4
14. サーボ問題		状態方程式を設定し、サーボ系を設計する。			4
15. そのほかの制御	15. そのほかの制御		極配置問題による設計法以外について調べる.		
キーワード	호수사 고비쓰자 그	组训怀 海型黑眼眼 4		習時間合計	60 能知即與
	安定性、可制御性、可能の関係を			ハック、仏	忠飥炽砳
数科書 参考書	中溝 ほか「ディジタル#	別岬の舗報と凍省」、 日新	山阪(199 /)		
<u></u>	づけ				
前年度までの関連科目		制御工学Ⅰ,制御工学Ⅱ,計測工学Ⅰ,計測工学Ⅱ			
現学年の関連科目		1976年,1 1,1978年上 1 年,月1次上丁 1,月1次1上丁 1			
次年度以降の関連科目		システム同定論			
連絡事項	•	マハノ 40円/圧開			
授業ごとに課題を出題します.					
> = .8 7 # * * F F F					
シラバス作成年月日	平成 23 年 2 月 26 日				