西脇昭雄,金原昭臣,黑須 茂,葛生克明*

CAD Software for Designing Process Control System —Parametric Analysis of Hunting in a VAV Control System—

Akio NISHIWAKI, Akiomi KIMBARA, Shigeru KUROSU Yoshiaki KUZUU*

1. はじめに

ビルの空調機(air handing unit)の設備更新に 伴い、アナログコントローラのディジタル化への置き 換えが進む中で、従来からのPIDパラメータの調整

Fig.1 Typical hunting of VAV control system

値を採用しているにもかかわらず,従来には見られな かった給気温度のハンティング現象が出現した。 (Fig.1)

ビルの空調機ではフィードバック方式により,給気 流量を可変にしている。これをVAV制御(variable air volume)とよんでいる。VAV空調システムは, 制御工学の観点から見ると大変複雑である。構造的に は,給気温度一定値制御,送風機回転数制御,VAV 制御ループが絡み合っている。また,近年主流となっ ている給気温度リセット制御¹⁾では,負荷の状況に合 わせて給気温度設定値を変化させるため,望ましい応 答特性を得ることは必要不可欠であるが,それぞれが 他のダイナミクスにおよぼす影響が制御調整問題をさ らに複雑にしている。このような状況下で,給気温度 のハンティング現象が問題になってきている。

この原因について,筆者らは既報2)においてアクチュ

*平成7年度機械工学科卒業生(現東京農工大)

エータの非線形性に着目し、非線形リミットサイクル の可能性を検討したが、現実性に疑問が残った。そこ で、空調機と部屋全体の制御系を集中定数化すること で、より簡単なモデルで給気温度とVAVの双線形系 として問題を定式化した。本論文では、まず室内温度 についての安定化領域をシミュレーションによって確 認した。

2. VAV制御系の構成

Fig. 2 にビルの空調による室内温度制御系の代表例 を示している。この制御系では、室内への給気熱量 (w_s) を変化させて室内温度(θ)を目標温度(θ_r) のまわりに保持している。給気温度(θ_s)は空調機 において、冷却コイルの中の冷却水の流量を変化させ て一定に制御されている。このように、全体の制御系 は空調機の給気温度制御系と室内温度制御系との2重 ループを含んでいる。

制御工学的にみれば,給気温度は目標値の変化に対 して速やかに応答するが,室内温度は時間遅れのため に緩慢に応答する。すなわち,室内温度制御系が全体

Fig.2 Overall structure of HVAC system

の制御系の特性を支配するといえる。

給気温度制御系はコントローラのゲインを十分高く とって0次系(代数方程式)とし,室内温度の動特性 を1次おくれ+むだ時間系として1ループの制御系の みに注目する。簡略化したVAV制御系をFig.3に示

Fig.3 Conventional VAV control system

す。そのさい、VAV開度変化による圧力変動はない ものとする。また、問題を単純化して考えるために、 VAVは1系統のみとする。本論文では、ダイナミク スの観点から安定化領域を考察することが目的である ので、給気温度リセット制御などは一切考慮しない。

3. 双線形システムの定式化

部屋の熱収支より、つぎの式がえられる。

$$C\frac{d\theta}{dt} = w_s(\theta_s - \theta) + KA(\theta_o - \theta)$$
(1)

- ここに, C:総熱容量 [kcal/℃]
 - K:熱貫流率 [kcal/m²min℃]
 - A:熱交換面積 [m²] w_s:給気熱量 [kcal/min℃]
 - *θ*_s:給気温度 [℃]
 - θ₀:外気温度[℃]

である。

基準温度をつぎのように定義する。

$$\begin{array}{c} \eta = \theta - \theta_o \\ \eta_s = \theta_s - \theta_o \end{array}$$

外気温度を基準にとることで、外気温度変化の影響 をモデルに包含して考えると、式(1)はつぎのように表 せる。

$$C\frac{d\eta}{dt} = w_s(\eta_s - \eta) - KA\eta \qquad (2)$$

ここに、 $\theta_s = 18$ [°C]、 $\theta_o = 27$ [°C] \overline{w}_s は 5 [kcal/min°C] (100%) と1.5 [kcal/min°C] (30%) の中間 3.24 [kcal/min°C] (65%)、KA=12.61 [kcal/min °C] とおくと、その定常値 η はづきのようになる。

$$\overline{\eta} = \frac{\overline{w}_s}{\overline{w}_s + KA} \, \overline{\eta}_s = \frac{3.24}{3.24 + 12.61} \, (-9)$$

となり、外気温 $\theta_o = 27$ [(\mathbb{C})に対して $\overline{\theta} = 25.16$ [\mathbb{C}] である。

さらに、定常状態 $\overline{w}_s, \overline{\eta}$ のまわりで微小偏分について

$$w_s = \overline{w}_s + \varDelta w_s$$

 $\eta = \overline{\eta} + \varDelta \eta$

とおいて,式(2)に代入してまとめると,つぎの双線形 系がえられる。

$$\frac{d\Delta\eta}{dt} = a\Delta\eta + n\Delta w_s \Delta\eta + b\Delta w_s \tag{3}$$

新しい変数

$$\Delta \eta
ightarrow x, \Delta w_s
ightarrow u$$
を定義すると、上式はつぎのようになる。
 dr

$$\frac{dx}{dt} = ax + nux + bu \tag{3}$$

ここに,総熱容量 $C = 170.14[\text{kcal}/\mathbb{C}]$ とすると,パ ラメータ a, n, bはそれぞれつぎのように計算できる。

$$a = -\frac{\overline{w}_s + KA}{C} = -\frac{3.24 + 12.61}{170.14} = -9.3 \times 10^{-2}$$

(1/min)

$$n = -\frac{1}{C} = -\frac{1}{170.14} = -6 \times 10^{-3} [C/kcal]$$

$$b = \frac{\bar{\eta}_s - \bar{\eta}}{C} = \frac{-9 + 1.84}{170.14} = -4.2 \times 10^{-2} [C^2/kcal]$$
さて、変数の物理的意味を調べておこう。
x=0の意味:
 $\eta = \bar{\eta} = -1.84 [C]$ と等価であり、そのとき
 $\bar{\theta} = \theta_o + \eta = 25.16 [C]$ である。
uの意味:
P動作を考えたとき、
 $u = \Delta w_s = k_c (\Delta \eta - \Delta \eta_r)$
 $= k_c (\eta - \bar{\eta} - \eta_r + \bar{\eta}_r)$
通常のコントローラでは、手動→自動の切り替え
時には $\bar{\eta} = \bar{\eta}_r$ であるから、
 $u = k_c (\eta - \eta_r)$
と考えてよい

1

ここではプラントを双線形系として扱うため、制御 入力 u(t) にむだ時間 L₀ [min]を考慮する。双線形で は、伝達関数は存在しないので Pade の近似は使え ない。したがって、安定解析は微分方程式を解くこと によって実施することに注意しよう。

(I)P 動作

 $u(t) = k_c e(t - L_p)$ (4)ここで, k は冷房ゲイン[kcal/min ℃²], 目標値は $x_r(t) = \Delta \eta - \Delta \eta_r = (\eta - \bar{\eta}) - (\eta_r - \bar{\eta})$, 偏差は $e(t) = x(t) - x_r(t)$ である。以下本論文では目標値 を0とおいて話を進める。したがって、式(4)は、

$$u(t) = k_c x(t - L_p) \tag{4}$$

(ii) PI 動作

$$u(t) = k_c \left\{ e(t - L_p) + \frac{1}{T_i} \int_0^t e(t - L_p) dt \right\}$$

= $k_c \left\{ x(t - L_p) + \frac{1}{T_i} \int_0^t x(t - L_p) dt \right\}$ (5)

さらに、制御入力はアクチュエータの飽和特性によっ て拘束条件が加わる。

$$|u(t)| \le U \tag{6}$$

ここに、Uはアクチュエータの飽和値[kcal/min℃] である。

4. シミュレーション実験

室内温度の動特性を1次おくれ系とし、アクチュエー タにむだ時間L。を含めて考慮し、平衡条件から求め た初期値,目標値を

初期值: x(0) = 1.84[℃]

目標值: *x*_r = 0〔℃〕

としてVAV制御シミュレーションを行い、ハンティ ング現象の限界ゲイン k_u , 角周波数 ω_u [rad/min] と振幅 a[℃]を求めた。

4.1 過度応答

(1)P動作

L。を可変パラメータとしてハンティング現象が起 こる限界ゲインk,を探索する。P動作の応答の一例 をFig.4に示す。このとき、安定限界における k,、 ω_u および a と, L_p との関係を Fig. 5 に示す。 (2)PI動作

L,を可変パラメータとして限界ゲインとkuを探索 したPI動作の一例を Fig. 6 に示す。 P 動作と同様, 安定限界における k_u , ω_u およびaと, L_b との関係を Fig.7 に示す。

No.	0	1	2	3	4	5	6	7	8	9	10
L_p	0.5	1	2	3	4	5	6	7	8	9	10
ku	60	34.4	19	13.4	10.5	8.7	7.6	6.8	6.1	5.6	5.2

Figure 4 Response of VAV control system (P action, U = 3.5 [kcal/min°C])

Fig. 4 Transient response characteristics for P-action

4.2 実験結果

パラメータ L_p , k_c , U, T_i の各々に変動をゆるし てシミュレーション実験をおこない定性的, 定量的性 質を調べた結果、つぎのようなことが判明した。

(1)限界ゲインk,

P動作:

$$k_u = 33.7 / L_p^{0.82}$$
 (7)
 $k_v \downarrow U に関係しないことがわかった。$

No.	1	2	3	4	5
Lp	1	2	3	4	5
ku	8.4	1.9	1.9	0.73	0.6

Figure 6 Response of VAV control system (PI action, U = 1.75 [kcal/min^oC], $T_i = 1$ [min])

PI動作:

 $k_u = 8.22/L_p^{1.76}$ (7')(2)角周波数ω" P 動作: ω_u

$$\mu = 1.43/L_p^{0.86}$$
(8)

$$\omega_u$$
は $U \ge k_c$ に関係しないことがわかった。

P I 動作:	
$\omega_u = 0.71/L_p^{1.11}$	(8′)
(3)振幅 <i>a</i>	
P動作:	

 $a = 0.009 U L_p^{0.93} \log_e k_c$ (9)

aはUに比例することがわかった。

P I 動作:

定性的にはP動作と同じ傾向にあり、aがUに比 例することが確認された。

実際のビル空調におけるハンティング現象の周期は Fig.1より25[min] であった。この場合, PIパラ メータは

 $k_c = 2.3, T_i = 1 \text{ [min]}$

である。(7'),(8')式より、このとき、

 $L_p = 2.55 \text{ [min]}, \ k_u = 1.58$

と計算される。したがって、比例ゲイン k,を過度に 大きくとり過ぎたことによるハンティング現象である ことが判明した。

4.3 安定限界の一般論

さて,安定限界の一般論を展開することにしよう。 式(3)において、n=0とおくと、線形系

$$\frac{dx}{dt} = ax + bu \tag{10}$$

を得る。むだ時間L, を制御入力u(t) にだけ考慮す ると、この系は1次おくれ+むだ時間系となる。入出 力関係を伝達関数で表わせば,

$$G(s) = \frac{X(s)}{U(s)} = \frac{K_p e^{-L_p s}}{T_p s + 1}$$
(11)

となり, ここに T, と K, はそれぞれ時定数 (1/a = 10.8 [min]) ゲイン定数 (b/a = 4.5 [℃²min /kcal]) である。

P動作とPI動作による制御系の安定限界は、それ ぞれつぎの連立方程式の解によって与えられる。 P動作:

$$\tan x_u = -x_u/\beta \\
 K_u = -1/\cos x_u$$
(12)

ここに、 $K_u = k_u K_p$ 、 $X_u = \omega_u L_p$ 、 $\beta = L_p / T_p$ である。 P I 動作:

$$\begin{aligned} & \tan x_{u} = \frac{1 + x_{u}^{2}/\beta\beta_{i}}{x_{u}(1/\beta - 1/\beta_{i})} \\ & k_{u} = \frac{x_{u}^{2}(1/\beta - 1/\beta_{i})/\beta_{i}}{\cos x_{u}(1 + x_{u}^{2}/\beta_{i}^{2})} \end{aligned}$$
(12')

CCV, $K_u = k_u K_p$, $x_u = \omega_u L_p$, $\beta = L_p / T_p$, $\beta_i =$ L_p/T_i である。式 (12), (12)の誘導は文献 を参照さ

れたい。これらの連立方程式はコンピュータによる数 値解によって解かれる。

P動作の場合: β に対して K_u と x_u の変化を示したのが Fig. 8(a)である。

$$\begin{array}{c} k_u = p/\beta^r \\ x_v = q\beta^s \end{array}$$
 (13)

ここに, *p*, *r*, *q*, *s*の数値はFig.8に示すデータに曲線のあてはめを実施し, Table1のように求められる。

式(13)で示す安定限界は、本研究で取り扱うVA Vシステムの安定限界の一般形を探索する上で都合が よいと考える。P動作に対して得られた安定限界式 (7),(8)はつぎのような修正によって一般形に変

Fig. 8 Dependency of k_{u_1} and x_u on β (a) P-action

Fig. 8 Dependency of k_u , and x_u on β (b) PI-action

換することができる。

$$K_{u} = K_{p} k_{u}$$

$$= 33.7(-b) T_{p}^{0.16} / \beta^{0.84}$$

$$= 2.07 / \beta^{0.84}$$

$$x_{u} = \omega_{u} L_{p}$$

$$= 1.43 T_{p}^{0.14} \beta^{0.14}$$

$$= 1.44 \beta^{0.14}$$

P I 動作に対しても同様にして求めた結果がTable 2 に示されている。

Table 1, 2 はゲイン k_u と正規化した周波数 x_u の 項で示した安定限界への正規化したむだ時間 β の影 響を示している。これらの正規化した変数は変数の数 を減らすために導入したものである。

Table2よりつぎのことが結論できる。

・正規化したむだ時間 β (= L_p/T_p) をシステムの大 域的安定性を保証するのに使うことができる。

• VAV制御系に対するコントローラの調整は安定限 界に対する倍率を決めることによって可能である。

最後に、線形系と双線形系の安定限界を対比させた $k_u \ge \omega_u$ の関係式を Table 3 に示す。このとき、時 定数 $T_p = 10.8[\min] \ge$ 積分時間 $T_i = 1[\min] \ge$ 固定 している。限界ゲイン $k_u \ge$ 限界周波数 ω_u はむだ時 間 L_p の関数として与えられる。Fig. 9 において、(a)(b)はP動作とPI動作を示し、点線が線形系、実 線が双線形系の限界ゲイン k_u を示している。P動作 である(a)では、線形系の k_u が双線形の k_u を超える ことはない。したがって、双線形系の安定領域は狭く なることを意味する。ところが、PI動作である(b) では、点線と実線が交点をもち、安定領域が逆転する。 しかしながら、 L_p が1.5[min]であれば双線形系の場合 に、プラントを単純な1次おくれ+むだ時間系として

	β_i	p	r	q	8
P-action	-	2.19	0.9	1.98	0.097
PI-action	0.8	1.52	0.70	1.62	0.22
	1.0	1.49	0.53	1.57	0.29
	1.2	1.36	0.37	1.50	0.36
	1.4	1.25	0.23	1.43	0.40
	1.6	1.09	0.15	1.36	0.43
	1.8	0.97	0.09	1.31	0.44
	2.0	0.83	0.07	1.25	0.45
	general form	2.15 -0.66 β_i	*	1.86 -0.31 β_i	*

Note: * denotes that no quantitative information is gained.

Table 1 values of p, r, q and s for linear systems

小山工業高等専門学校研究紀要 No.29

	β_i	p	r	q	s
P-action	-	2.07	0.9	1.98	0.097
PI-action	0.8	1.98	0.48	1.91	0.37
	1.0	1.88	0.30	1.81	0.44
	1.2	1.68	0.16	1.66	0.48
	1.4	1.45	0.07	1.54	0.51
	1.6	1.19	0.04	1.43	0.51
	1.8	0.99	0.03	1.37	0.49
	2.0	0.86	0.00	1.27	0.51
	general form	2.84– β_i	*	2.41 -0.62 β_i	*

Note: * denotes that no quantitative information is gained.

	Table	2	Values	of	р,	r,	q	and	S	for	bilinear	systems
--	-------	---	--------	----	----	----	---	-----	---	-----	----------	---------

		n = 0	$n \neq 0$
Destin	ku	$41.1 / {L_p}^{0.9}$	33.7 / ${L_p}^{0.84}$
P-action	ω	1.57 / ${L_p}^{0.9}$	1.43 / $L_p^{0.86}$
DT	k _u	11.33 / ${L_p}^{2.57}$	8.22 / $L_p^{-1.76}$
Pl-action	ω	$0.78/{L_p}^{1.51}$	$0.71 / {L_p}^{1.11}$

Table 3 Comparison of stability limit for hunting between two systems

Fig. 9 Comparison of k_u between two systems

とらえた場合により安定領域が狭くなることがわかる。 これらの結果はPIDコントローラらのパラメータを 調整するさいに重要な情報となろう。

6. おわりに

VAV制御にともなうハンティング現象はフィール ドオペレータが日常経験することである。本研究では、 VAV制御系の安定領域を解明するために適切なる値 でシミュレーション実験を行った。

本解析の結果, つぎのことが判明した。

- 部屋の熱抵抗と熱容量を考慮した単純な熱プロセスでモデル化し、むだ時間をもつ双線形系として定式化し安定領域を調べた。
- 2. 過度応答の数値シミュレーションにより,限界ゲ イン,限界周波数,振幅をシステムパラメータの関 数として導いた。その結果はVAV制御系の実際の ハンティング現象の有益な情報であった。
- 3. 安定領域に関する経験則を提案し、これによりコ ントローラの調整が可能となった。
- 線形系と双線形系の安定領域の比較を実施した。
 双線形系の安定領域が狭くなり、不安定になり易い
 特性を明らかにした。

さらに,式(3),式(4)から導いたフィードバック 双線形系

 $\frac{dx}{dt} = ax(t) + bk_c x(t - L_p) + nk_c x(t) x(t - L_p) \quad (10)$

の安定化領域を求める問題は、山脇ら³⁰によって研究 されているが、その結果は強い十分条件なので実用化 には距離を感じる。そこで本研究では、数値解析的に 安定化領域を調べ,実用化への足掛かりとすることを ねらった。

空調システムのこのような不安定現象の解明は,今後の重要な課題となっていくものと確信する。

参考文献

- 蓄熱システム最適化委員会:(氷)蓄熱式空調シ ステムの最適化制御と故障・異常診断に関する研 究,空気調和・衛生工学会(1996)
- 2) 松葉ほか:空気調和機の給気温度制御系における ハンティング現象の解析,空気調和・衛生工学会 学術講演会'95広島(1995)
- 山脇ほか:離散時間双線形系の安定化,計測自動 制御学会学術講演会'90東京(1990)
- T.Matsuba et al.: Parametric analysis of hunting phenomena in VAV systems (AS HRAE投稿中)

附録 むだ時間のある双線形システムの安定領域

双線形系の安定化問題は、この数年山脇ら¹¹によっ て研究されており、本研究はその延長上にある。しか しながら、解析的に求められた安定化領域は、きわめ て狭い範囲であり、本研究はシミュレーションによっ て真の漸近安定を確認している。

1. 双線形システムによる定式化

部屋の動特性を表すモデルは本文における(3)式より,つぎのように表わせる。

 $\frac{dx}{dt} = a_c x(t) + n_c x(t) u(t - Lp) + b_c u(t - Lp)$ (A-1)

Lp=1[min]としてサンプリング周期 $T=L_p$ で離散 化すると,

x(k+1) = Ax(k) + u(k)Nx(k) + bu(k) (A-2) C = C A, N, b = t = 0

$$\boldsymbol{A} = \begin{bmatrix} \boldsymbol{a} & \boldsymbol{0} \\ 1 & \boldsymbol{0} \end{bmatrix}, \ \boldsymbol{N} = \begin{bmatrix} \boldsymbol{n} & \boldsymbol{0} \\ 0 & \boldsymbol{0} \end{bmatrix}, \ \boldsymbol{b} = \begin{bmatrix} \boldsymbol{b} \\ 0 \end{bmatrix} \quad (A-3)$$

ただし、 $a = e^{a_c^T}$, $n = n_c T e^{a_c^T}$, $b = \int_0^T e^{a_c \eta} b_c d\eta$ (A-4) である。

離散化の証明:つぎのように一般化した連続時間系 で離散化する。

$$\frac{d\boldsymbol{x}}{dt} = \boldsymbol{A}_{c}\boldsymbol{x}(t) + \boldsymbol{u}(t)\boldsymbol{N}_{c}\boldsymbol{x}(t) + \boldsymbol{b}_{c}\boldsymbol{u}(t)$$

- ここに, u(t) はスカラーである。
- $kT \leq t \leq (k+1)T$: u(t) = u(k)として離散化すると、

$$\boldsymbol{x}(k+1) = e^{(A_{c}+u(k)N_{c})T}\boldsymbol{x}(k)$$

$$+\int_{o}^{T}e^{(A_{c}+u(k)N_{c})\eta}b_{c}u(k)d\eta$$

n(k)についてはつぎのように展開し、1次近似を すると、

$$\rho^{(A_c+u(k)N_c)}$$

$$= I + (A_{c} + u(k)N_{c})T + \frac{(A_{c} + u(k)N_{c})^{2}}{2!}T^{2} + \cdots$$

$$= I + A_{c}T + \frac{1}{2!}A_{c}^{2}T^{2} + \cdots$$

$$+ u(k) \left\{ N_{c}T + \frac{A_{c}N_{c} + N_{c}A_{c}}{2!}T^{2} + \frac{A_{c}^{2}N_{c} + A_{c}N_{c}A_{c} + N_{c}A_{c}^{2}}{3!}T^{3} + \cdots \right\}$$

$$+ u^{2}(k) \left\{ N_{c}^{2}T + \cdots \right\}$$

$$= e^{A_{c}T} + u(k) \left\{ N_{c}T + \frac{A_{c}N_{c} + N_{c}A_{c}}{2!}T^{2} + \cdots \right\}$$
(第3項を無視)

$$=e^{A_{c}T}+u(k)N$$

$$A_c N_c +$$

$$N = N_c T + \frac{A_c N_c + N_c A_c}{2!} T^2 + \cdots$$

$$\int_{o}^{T} u(k)e^{(A_{c}+u(k)N_{c})\eta}\boldsymbol{b}_{c}d\eta$$

$$= u(k)\int_{o}^{T} \left\{ e^{A_{c}\eta} + u(k)N\eta \right\} \boldsymbol{b}_{c}d\eta$$

$$= u(k)\int_{o}^{T} e^{A_{c}\eta}\boldsymbol{b}_{c}d\eta \qquad (第 2 項を無視)$$

$$= u(k)\boldsymbol{b}$$

ここに

$$\boldsymbol{b} = \int_{o}^{T} e^{A_{c}\eta} \boldsymbol{b}_{c} d\eta$$

である。よって、 $\mathbf{x}(k+1) = A\mathbf{x}(k) + u(k)N\mathbf{x}(k) + bu(k)$ になる。(証明終り)

システム式(A-3)の閉ループ系は、P動作において、

$$u(k) = f \boldsymbol{x}(k) \tag{A-5}$$

-165-

$$f = \begin{bmatrix} 0 & k_c \end{bmatrix}$$
 (A-6)
(A-3), (A-5) より閉ループ系は,
 $x(k+1) = A_f x(k) + f x(k) N x(k)$ (A-7)
ここで,
 $A_f = \begin{bmatrix} A+bf \end{bmatrix}$ (A-8)
閉ループ系式 (A-7) の漸近安定は, つぎのように
評価できる。

2. 安定化領域Ω

閉ループ系式(A-7)の初期値に依存する安定化 領域Ωは、つぎのとおりである。 Lvapunov 関数より

$$V(\mathbf{x}(k)) = \mathbf{x}^{T}(k)\mathbf{P}\mathbf{x}(k) \qquad (A-9)$$
$$\Delta V(\mathbf{x}(k)) = V(\mathbf{x}(k+1)) - V(\mathbf{x}(k))$$
$$= -\mathbf{x}^{T}(k)\mathbf{Q}\mathbf{x}(k) + f\mathbf{x}(k)\mathbf{x}^{T}(k)\mathbf{R}_{1}\mathbf{x}(k) + \left\{f\mathbf{x}(k)\right\}^{2}\mathbf{x}^{T}(k)\mathbf{R}_{2}\mathbf{x}(k)$$

ここに,

$A_f^T P A_f - P = -Q$	(A-10)
$\boldsymbol{R}_1 = \boldsymbol{A}_f^T \boldsymbol{P} \boldsymbol{N} + \boldsymbol{N} \boldsymbol{P} \boldsymbol{A}_f$	(A-11)
$R_2 = N^T P N$	(A-12)

である。

$$= \boldsymbol{x}^{T}(k)\boldsymbol{Q}\boldsymbol{x}(k)\left\{-1+\boldsymbol{f}\boldsymbol{x}(k)\frac{\boldsymbol{x}^{T}(k)\boldsymbol{R}_{1}\boldsymbol{x}(k)}{\boldsymbol{x}^{T}(k)\boldsymbol{Q}\boldsymbol{x}(k)} + \{\boldsymbol{f}\boldsymbol{x}(k)\}^{2}\frac{\boldsymbol{x}^{T}(k)\boldsymbol{R}_{2}\boldsymbol{x}(k)}{\boldsymbol{x}^{T}(k)\boldsymbol{Q}\boldsymbol{x}(k)}\right\}$$

定理1により,

$$\leq oldsymbol{x}^T(k)oldsymbol{Q}oldsymbol{x}(k)\Big\{-1+|oldsymbol{f}oldsymbol{x}|\,oldsymbol{\gamma}_{ ext{max}}ig(oldsymbol{R}^1oldsymbol{Q}^{-1}ig) \ +\{oldsymbol{f}oldsymbol{x}(k)\}^2oldsymbol{\gamma}_{ ext{max}}(oldsymbol{R}_2oldsymbol{Q}^{-1})\Big\}$$

定理2により

$$\leq x^{T}(k)Qx(k) \{-1 + (fP^{-1}f^{T})^{1/2} V(x(k))^{1/2} \gamma_{\max}(R_{1}Q^{-1})\}$$

$$+ \left(\boldsymbol{f}\boldsymbol{P}^{-1}\boldsymbol{f}^{T}\right) V(\boldsymbol{x}(k)) \gamma_{\max}\left(\boldsymbol{R}_{2}\boldsymbol{Q}^{-1}\right) \right\} < 0$$

$$-1 + \left(\boldsymbol{f}\boldsymbol{P}^{-1}\boldsymbol{f}^{T}\right)^{1/2} V\left(\boldsymbol{x}(k)\right)^{1/2} \gamma_{\max}\left(\boldsymbol{R}_{1}\boldsymbol{Q}^{-1}\right)$$

$$+ \left(\boldsymbol{f}\boldsymbol{P}^{-1}\boldsymbol{f}^{T}\right) V\left(\boldsymbol{x}(k)\right) \gamma_{\max}\left(\boldsymbol{R}_{2}\boldsymbol{Q}^{-1}\right) < 0 \quad (A-13)$$

式 (A-13) を V(x(k)) について解くと,

$$V(\boldsymbol{x}(k)) < \left\{ \frac{-(\boldsymbol{f}\boldsymbol{P}^{-1}\boldsymbol{f}^{T})^{1/2}\gamma_{\max}(\boldsymbol{R}_{1}\boldsymbol{Q}^{-1}) \pm \sqrt{M_{3}}}{2(\boldsymbol{f}\boldsymbol{P}^{-1}\boldsymbol{f}^{T})\gamma_{\max}(\boldsymbol{R}_{2}\boldsymbol{Q}^{-1})} \right\}^{2}$$

$$= (M_{1}, M_{2})$$

$$M_{3}(\boldsymbol{f}\boldsymbol{P}^{-1}\boldsymbol{f}^{T}) \left\{ \gamma_{\max}(\boldsymbol{R}_{1}\boldsymbol{Q}^{-1}) \right\}^{2} + 4(\boldsymbol{f}\boldsymbol{P}^{-1}\boldsymbol{f}^{T})$$

$$\times \gamma_{\max}(\boldsymbol{R}_{2}\boldsymbol{Q}^{-1})$$

安定化領域Ωは,

$$\Omega = \left\{ \boldsymbol{x}(k) \, \epsilon R^n : V\big(\boldsymbol{x}(k)\big) = \boldsymbol{x}^T(k) \boldsymbol{P} \boldsymbol{x}(k) < M \right\}$$
(A-15)

$$M = \left\{ \min(|M_1|, |M_2|) \right\}^2$$
 (A-16)

以上の結果,安定化領域 Ω は,行列f,Qにより評価 されている。

定理 1

$$\left|\frac{\boldsymbol{x}^{T}(k)\boldsymbol{R}_{1}\boldsymbol{x}(k)}{\boldsymbol{x}^{T}(k)\boldsymbol{Q}\boldsymbol{x}(k)}\right| \leq \max_{i}\left\{\left|\lambda_{i}\left(\boldsymbol{R}_{1}\boldsymbol{Q}^{-1}\right)\right|\right\}$$

$$\leq \gamma_{\max}\left(\boldsymbol{R}_{1}\boldsymbol{Q}^{-1}\right)$$

$$\left|\frac{\boldsymbol{x}^{T}(k)\boldsymbol{R}_{2}\boldsymbol{x}(k)}{\boldsymbol{x}^{T}(k)\boldsymbol{Q}\boldsymbol{x}(k)}\right| \leq \max_{i}\left\{\left|\lambda_{i}\left(\boldsymbol{R}_{2}\boldsymbol{Q}^{-1}\right)\right|\right\}$$

$$\leq \gamma_{\max}\left(\boldsymbol{R}_{2}\boldsymbol{Q}^{-1}\right)$$

定理1の証明:

R,Q(正定)は実対称マトリクスとするとき

$$\left|\frac{\boldsymbol{x}^{T}\boldsymbol{R}\boldsymbol{x}}{\boldsymbol{x}^{T}\boldsymbol{Q}\boldsymbol{x}}\right| \leq \gamma_{\max}\left(\boldsymbol{R}\boldsymbol{Q}^{-1}\right)$$

がなりたつ。

Qは対称であるから、 $Q = P^{T}P$ となるような正則マトリクスPが存在する。このPを用いて

$$\hat{R} = (P^{-1})^T R P^{-1}$$
を定義する。 \hat{R} も実対称マトリクスである。
 \hat{R} を直交マトリクスを用いて、実対称マトリクス A
に変換する。

 $\tilde{R} = \tau^{-1}A\tau \qquad \tau^{-1} = \tau^{T}$ $T = (\tau P)^{-1} \succeq \exists i \ i \ t \ T^{T} = [(\tau P)^{-1}]^{T} = [P^{-1}\tau^{-1}]^{T}$ $T^{T}RT = [P^{-1}\tau^{-1}]^{T}RP^{-1}\tau^{-1} = (\tau^{-1})^{T}(P^{-1})^{T}RP^{-1}\tau$ $= (\tau^{-1})^{T}\tilde{R}\tau^{-1} = \tau\tilde{R}\tau^{-1} = A$ $T^{T}QT = [P^{-1}\tau^{-1}]^{T}QP^{-1}\tau^{-1} =$ $(\tau^{-1})^{T}(P^{-1})^{T}QP^{-1}\tau^{-1} =$ $= (\tau^{-1})^{T} (P^{-1})^{T} P^{T} P P^{-1} \tau^{-1} = (\tau^{-1})^{T} \tau^{-1} = I$ となる。変数変換 x = Tyを行うと, $x^{T} R x = y^{T} T^{T} R T y = y^{T} A y$ $x^{T} Q x = y^{T} T^{T} Q T y = y^{T} y$ A の対角要素は \tilde{R} の固有値である。 $\tau \tilde{R} \tau^{-1} = A \downarrow \eta \tilde{R} \tau = \tau A$ では直交マトリクスであるから $\tau = [v_{1}, \dots v_{n}]$ $v_{1}, \dots v_{2}$ は固有ベクトル $\tilde{R}(v_{1}, v_{2} \dots) = [\tilde{R} v_{1}, \tilde{R} v_{2}, \dots \tilde{R} v_{n}]$ $= (\lambda_{1} v_{1}, \lambda_{2} v_{2} \dots \lambda_{n} v_{n}) = (v_{1}, v_{2} \dots v_{n}) \begin{bmatrix} \lambda_{1} & 0 \\ \lambda_{2} \\ 0 & \lambda_{n} \end{bmatrix}$ であり, A の対角要素は \tilde{R} の固有値である。

であり、Aの対角安素はRの固有値である。 \tilde{R} の固有値は RQ^{-1} の固有値である。

$$|\tilde{\boldsymbol{R}} - \lambda \boldsymbol{I}| = |(\boldsymbol{P}^{-1})^{T} \boldsymbol{R} \boldsymbol{P}^{-1} - \lambda \boldsymbol{I}|$$

$$= |(\boldsymbol{P}^{-1})^{T} \boldsymbol{R} \boldsymbol{Q}^{-1} \boldsymbol{P}^{T} - \lambda \boldsymbol{I}|$$

$$(\boldsymbol{Q} = \boldsymbol{P}^{T} \boldsymbol{P} \downarrow \boldsymbol{h} \boldsymbol{Q}^{-1} = \boldsymbol{P}^{-1} (\boldsymbol{P}^{-1})^{T} \therefore \boldsymbol{P}^{-1} = \boldsymbol{Q}^{-1} \boldsymbol{P}^{T})$$

$$= |(\boldsymbol{P}^{T})^{-1} \boldsymbol{R} \boldsymbol{Q}^{-1} \boldsymbol{P}^{T} - \lambda (\boldsymbol{P}^{T})^{-1} \boldsymbol{P}^{T}|$$

$$= |(\boldsymbol{P}^{T})^{-1} (\boldsymbol{R} \boldsymbol{Q}^{-1} - \lambda \boldsymbol{I}) \boldsymbol{P}^{T}|$$

$$= (\boldsymbol{P}^{T})^{-1} |(\boldsymbol{R} \boldsymbol{Q}^{-1} - \lambda \boldsymbol{I}| \boldsymbol{P}^{T}$$

よって \hat{R} と RQ^{-1} の固有値は同じである。 RQ^{-1} の固有値を

$$\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$$
とする。
$$\left| \max \frac{\boldsymbol{x}^{T} \boldsymbol{R} \boldsymbol{x}}{\boldsymbol{x}^{T} \boldsymbol{Q} \boldsymbol{x}} \right| = \left| \max \frac{\boldsymbol{y}^{T} \boldsymbol{A} \boldsymbol{y}}{\boldsymbol{y}^{T} \boldsymbol{y}} \right| = \left| \frac{\boldsymbol{e}_{n}^{T} \boldsymbol{A} \boldsymbol{e}_{n}}{\boldsymbol{e}_{n}^{T} \boldsymbol{e}_{n}} \right| = |\lambda_{n}|$$

$$\max_{i} \frac{\lambda_{1} y_{1}^{2} + \lambda_{2} y_{2}^{2} + \cdots + \lambda_{n} y_{n}^{2}}{y_{1}^{2} + y_{2}^{2} + \cdots + y_{n}^{2}} \leq \frac{\lambda_{n} (y_{1}^{2} + \cdots + y_{n}^{2})}{(y_{1}^{2} + \cdots + y_{n}^{2})} = \lambda_{n}$$
(証明終り)

定理 2

$$|f\mathbf{x}(k)| \leq ||fP^{-1/2}|| \cdot ||P^{1/2}\mathbf{x}(k)|| = (fP^{-1}f^{T})^{1/2}
(\mathbf{x}^{T}(k)P\mathbf{x}(k))^{1/2}
= (fP^{-1}f^{T})^{1/2}V(\mathbf{x}(k))^{1/2}
(f\mathbf{x}(k))^{2} \leq \{|f\mathbf{x}(k)|\}^{2} = (fP^{-1}f^{T})(\mathbf{x}^{T}(k)P\mathbf{x}(k)
= (fP^{-1}f^{T})V(\mathbf{x}(k))^{2}$$

定理2の証明: $|fx(k)| = |f \cdot I \cdot x(k)| = |fP^{-1/2}P^{1/2}x(k)|$ ここにI: 単位マトリクス, $f \in R^{1 \times x}$, $x(k) \in R^n$, $P \in R^{n \times n}$:実対称マトリクスである。 ここで各マトリクスを2次元について考える。 $\boldsymbol{f} = [f_1 f_2], \ \boldsymbol{x} = \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix}, \ \boldsymbol{P}^{1/2} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \ \boldsymbol{P}^{-1/2} = \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix}$ とおくと、 $fP^{-1/2} =$ $(f_1f_2)\begin{bmatrix}a'b'\\c'd'\end{bmatrix} = (f_1a'+f_2c' f_1b'+f_2d') = (A, B)$ $\boldsymbol{P}^{1/2}\boldsymbol{x}(k) = \begin{bmatrix} a \ b \\ c \ d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} ax_1 + bx_2 \\ cx_1 + dx_2 \end{bmatrix} = \begin{bmatrix} C \\ D \end{bmatrix}$ となり、 $\boldsymbol{f}\boldsymbol{P}^{-1/2}\boldsymbol{P}^{1/2}\boldsymbol{x}(k) = (A, B)\begin{bmatrix} C\\D \end{bmatrix} = AC + BD \ (\boldsymbol{X}\boldsymbol{\pi}\boldsymbol{\bar{\neg}} -)$ $AC+BD = \langle (AB), (CD) \rangle = \langle (AB), \begin{bmatrix} C \\ D \end{bmatrix}^T \rangle$ $= \langle f P^{-1/2}, \{ P^{1/2} x(k) \}^T \rangle \langle f P^{-1/2}, x(k)^T P^{1/2} \rangle$ く・>は・の内積を示す。 Schwartzの不等式より $|\langle x, y \rangle| \leq ||x|| \cdot ||y||$ $|fx(k)| = |fP^{-1/2}P^{1/2}x(k)| =$ $|\langle fP^{-1/2}, x(k)^TP^{1/2} \rangle| \leq ||fP^{-1/2}|| \cdot ||x(k)^TP^{1/2}||$

3. シミュレーション結果
理論による安定化領域:
比例ゲイン
$$k_c = 24$$
として安定化領域を求める。
ここに、
 $a_c = -9.3 \times 10^{-2}, n_c = -6 \times 10^{-3}, b_c = -4.2 \times 10^{-2}$
サンプリング周期 $T = 1(\min)$ として離散化すると、
 $a = 0.91, n = -5.5 \times 10^{-3}, b = -4 \times 10^{-2}$
(9)式より A_f は、
 $A_f = \begin{bmatrix} 0.91 & -0.96 \\ 1 & 0 \end{bmatrix}$
また、 $P, \gamma_{\max}(R_1Q^{-1}), \gamma_{\max}(R_2Q^{-1})$ は、
 $P = \begin{bmatrix} 32.52 & -14.49 \\ -14.19 & 30.97 \end{bmatrix}$
 $\gamma_{\max}(R_2Q^{-1}) = 9.8 \times 10^{-4}$
これより、式(15)より安定化領域は、
 $\Omega = \{x(k) \in R^n: x^T(k) Px(k) < 0.552\}$

-167-

(証明終り)

Fig.A-1 Stability Limit based on Theoretical Analysis

Fig.A-2 Results of Digital Computer Solution (initial value $x_1=x_2=0.1$)

と求まる。

これによりFig.A-1のようになる。この安定化領 域の初期値に対する制御系の応答はFig.A-2であり、 安定であることが確認できる。

シミュレーションによる安定化領域: x_1, x_2 の初期値によるシミュレーションを行った。 その結果,安定化領域はFig.A-3のようになった。 この安定領域内の初期値に対する制御系の応答はFig. A-4であり,安定であることが確認できる。

Fig.A-4 Results of Digital Computer Solution (initial value $x_1=x_2=3.0$)

5.おわりに

残念ながら数学的に強めの条件を課して得た安定化 領域は実用的であるとは言えない。

本研究で得られた結果は,連続時間系で考察した (給気温度制御におけるハンティング現象の解析)事 実と一致している。

参考文献

- 山脇,馬場:離散時間双線形の安定化,SICE
 '90 (Tokyo), 37/38 (1990)
- 2) 児玉,須田:システム制御のためのマトリクス理 論,計測自動制御学会,(1978)

(受理年月日 1996年 9 月30日)