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ABSTRACT

The multiplicative ideal theory has been developped for commutative rings. The aim of this
paper 1s to give a semigroup version of the multiplicative ideal theory of commutative rings. In
this paper we shall prove some fundamental properties of ideals of G-semigroups. Here we call
a torsion-free cancellative abelian additive semigroup with identity a G-semigroup, where G
stands for Gilmer. It is expected that the ideal theory of G-semigroups is more simpler than that
of commutative rings. But the multiplicative ideal theory of semigroups is itself interesting and
important. For the multiplicative ideal theory of rings, we refer to [Gl] and [LM].

1. Introduction.

An abelian (additive) semigroup (S,+) with identity is called a monoid. The identity of a
monoid S is denoted by 0. A monoid S is said to be cancellative,if a+b=a+c¢ where a,b,c are in S,
then b=c, and S is said to be torsion-free if ns=nt, where n€N and s,t in S, then s=t. In [N], a
cancellative monoid is called a grading monoid.

An abelian (additive) group G is called torsion-free if na=0 with n€ N,a € G,then a=0. A
subsemigroup SD1{0f of a torsion-free abelian group is a torsion-free grading monoid. In our paper
we call a torsion-free grading monoid a G-semigroup, where G stands for Gilmer.

Let S be a G-semigroup. A subset I+ ¢ of S is called an ideal of S if S+ICI. For each x€S,
set (x)=x+S, Then (x) is an ideal of S. An ideal I of S is called a principal ideal if I=(x) for some
x€S. If each ideal of S is principal, then S is called a principal ideal semi-group(for short, PIS).

An element x of S is called a unit if x+y=0 for some y€S. For x€S, x is a unit if and only
if (x)=S. If Bis a nonempty subset of S, then B+S={b+s| b€B,s€S}| is the ideal of S generated
by B. An ideal A of S is called proper if A#S. An ideal A of S is called idempotent if A=A+A.

Let U be the set of units of S. Then M=S\U is an ideal of S that contains all other proper
ideals of S and is called the maximal ideal of S. If | is an 1deal of S, then the radical of I, denoted
by 1, is defined to be yI ={s€S | ns€l for some nEN|. One easily see that V1 is an ideal of S.

Let PCS be an ideal. Then P is called a prime ideal if si+s:€P for s1,5:€5= s:€P or s: €
P. An ideal Q of S is called a primary ideal if si1+s:€Q and s: £ Q= ns: €Q for some n€N. [For
a primary ideal Q of S, VQ isa prime ideal. YQ is called a prime ideal belonging to Q. Q 1s called
a primary ideal belonging to Ja, or Q 1s \”6 -primary.

If A is an ideal of S such that A can be expressed as a finite intersection of primary ideals A=
M-, Q, then this representation of A is said to be a shortest representation of A if MN;,;, Q;*A
for each 1=i=n, and Q;,..., Q. are mutually distinct.
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(1.1)Proposition. Let A= M-, Q be a shortest representation of A. Then the number n is
uniquely determined, that is, if A= N{_, Q' be another shortest representation of A, then n=m.

Two elements a and b in S are said to be associated if there exists a unit u such that b=a+u(or
equivalently, a=b+v for some unit v). Let s,s’€S. If s+a=s" for some a€S, then s is called a
divisor of s’and s’ is called a multiple of s. In this case, we denote s|s’. Note that divisors of 0
are units of S. If s|s" and s'|s, then s and s’ are associated. An element s of S is called an
irreducible element if it satisfies the following conditions:

(1) s is not a unit.
(2) If s=si1+s: (s €8S), then either s: or s: is a unit.
A G-semigroup S is called a unique factorization semigroup(for short, a UFS) if it satisfies the

following conditions:

(UF1) Every non-unit of S can be written as a finite sum of irreducible elements.

(UF2) If a=pi+p:+...+pa=qi+q:+...+qa, where p: and q; are irreducible, then n=m and on re-
numbering p; and q: are associated for each i.

In the case of n=0, we refer that a is a unit.

We shall consistently use Z to denote the ring of all integers, Zo to denote the set of nonnegative
integers, and Q to denote the field of rational numbers. The symbol € will denote containment; C
denotes proper containment. If A and B are sets, then AN\B denotes the set of elements of A which
are not in B. | A| denotes the cardinal number of the set A. We use ¢ to denote the empty set.

2. Additive systems
Let T be a nonempty subset of a G-semigroup S. T is called an additive system in S, in case,
if t, t'€T, then t+t"€T. For an additive system T, the quotient semigroup Sr 1s defined as follows:
Sr=ist|s€SteTL.
It is easy to see that Sr 1s a G-semigroup. Especially, if T=S,then the quotient semigroup Ss=
Isi-s2 | 51,5: €S} is called the quotient group of S, and is denoted by q(S). Note that q(S) is an
abelian (additive) group.

(2.1)Remark.

(1) Let S be a G-semigroup. Then S is torsion-free if and only if the quotient group is torsion-free.
(2) S is a canncellative subsemigroup of q(S) and the subsemigroup of G=q(S) generated by S

and {-s | s€S} is G. BEach element of G is a unit of G.

(2.2) Remark. Let I be an ideal of a G-semigroup S. Then I is a prime ideal of S if and only if
S\I is an additive system of S.

Let A be an ideal of S and T a subset of S. Then, set A-T={x€S | x=a-t, a€A, t€T|.

Proof of (1.1). Set VQ, =P, @;‘:P;. Let P be any one of Pi,...,P.. Then it is enough to show
that P=P] for some j. Suitably changing the order, we assume that
Pijenn Pt CP, Pa=P, Pot-l,.. . B EP; Pi....PIEPR P, PiE P
Set S-P=T. Then we have '
AT=Q:N...NQ.=QiN...NQ%
If P#+P] (1=Vj=t), then there exists a€P such that
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agE PiU...UPIUP,U...UP,,,

Furthermore, there exists k€N such that

ka€Q. and ka & QIU...UQIUQ:U...UQ.-1.
Thus we have

Qi:ka=Q; (1=si=<s-1), Qi:ka=Q] (1=)=t),
where A:U={x€S| U+xCA!} for an ideal A and a subset U of S.
Therefore it follows that

(A-T):ka=(Nizt Qi):ka=Q:iN...NQ.-
and

(A-T):ka=(Ni-1 Q1):ka=QIN...NQ=Q:N...NQ..

But this is a contradiction,

(2.3) Lemma. Let T be an additive system of a G-semigroup S and let A be an ideal of S such
that ANT=+¢. Then there is a prime ideal P of S such that ACP and PNT=¢.

Proof. By Zorn's Lemma, there i1s a maximal ideal P in the set L. =1{J | J is an ideal of S such
that ACJ and JNT=¢|. If x,y€S\P, then PU(x) and PU(y) meet T so that x+s,, y+s:€T
forsome si,5: €S. Then x+y+s:+s:€T and so x+y€S\P. Hence P i1s a prime ideal of S.

Let T be an additive system of S. Then the set {s€S | s divides some element of T} is called the
saturation of T. If the saturation of T coincides with T, then T is called a saturated additive system.

(2.4)’roposotion. Let T be an additive system in S, and let T" be the complement of T in S. The
following conditions are equivalent:

(1) T is saturated.

(2) T" is the union of a set of prime ideals of S.

Proof. (1)=(2): We show that T'=U{P. | P, 1is a prime ideal of S not meeting Tl. 2 is clear.
Conversely, if x€T', then (x)NT=¢, and so by (2.3), (x)EP: for some prime ideal P, such that
P.NT=¢. Hence € also holds.

(2)=(1): This is evident.

(2.5)Theorem. Let T be the quotient group of a G-semigroup R and let S: and S: be subsemigroups

of T containing R such that S;CS..

(1) If Sz is a quotient semigroup of R, then S: is a quotient semigroup of S..

(2) If S 1s a quotient semigroup of R and if S: is a quotient semigroup of Si,then S: is a quotient
semigroup of R.

Proof. (1): Suppose that S:=Rx, where N is an additive system of R. Then it is easily seen that
S. Z(S: :'N.

(2): Let Si=Rum: and S:=(S:)u,. Then we shall show that S:=Ru, where M={x€R | x is a unit
of S:f. Since M;EM, S:=Rx, ERx. Now let ue M. CS,. Then u=r-v for some r€R, veM,, and
then we have r=u+v, where u and v are units of S:. Hence rEéM and so -u=v-r€Ru. Thus -M.=
{-ul uEM:{ SRy, and then S:=(S:)u, C(Ru)u. =Ruy, i.e., S:=Ru.
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If R is a G-semigroup and S is a semigroup such that RCSCq(R), then S is said to be a
oversemigroup of R. By (2.1), S is torsion-free, and so is a grading monoid.

(2.6)Corollary. If A is an ideal of a G-semigroup R and if {Pifiea is the set of prime ideals of
R containing A, then YA =NP,.

Proof. This follows from (2.3).

3. Fractional ideals

Let R be a G-semigroup and let T be the quotient group of R. A subset I of T is said to be
a fractional ideal of R if R+FCF and r+FCR for some r€ R. Each ideal of R is called an integral
ideal. For ti,...,t €T, set (ti,...,ta)=U(t,+R). This is a fractional ideal of R. The set {ti,...,tal
is called a generating set or a set of genecrators. A fractional ideal A of R is called finitely
generated if there exist a finite set {ti,...,t.| of generators such that A=(t:,...,ta). If there exists
t€T such that A=(t), then A is said to be a principal fractional ideal.

Denote by F(R) the set of fractional ideals of a G-semigroup R, and by F*(R) the set of
finitely generated fractional ideals of R. If ', ,[F;€F(R), then F1+F, is defined by {x+y|x€F;,
yEF:t. And we define [Fi:F.]: to be {x€T | x+F.CFi{. If Fi and F: are integral ideals,then

Fi:F: is defined by {x€R | x+F.CF.{.

(3.1)Theorem. Let R be a G-semigroup and let T be the quotient group of R.

(1) F(R) is closed under addition and finite intersection. If Fi,F:€F(R), then [FFi:FF.]-€F(R).

(2) If \,F.€F(R) and if S; is a set of generators for F,then S;US; 1is a set of generators for
FiUF, and {s+t|s€S t€S:| is a set of generators for Fi+F.. F*(R) is closed under union.
(3) If A is an integral ideal of R and if r is an element of R, then A-r is a fractional ideal of RR.
(4) If FEF(R), then there is an integral ideal A of R and r€R such that F=A-r.

Proof. The proof is straightforward, and we omit 1it.

I each 1deal of S is finitely generated, then S is said to be a Noetherian semigroup.

(3.2)Theorem. If each prime ideal of a G-semigroup R is finitely generated, then R is Noetherian.

Proof. Suppose that R is not Noetherian. Then there exists an ideal B of R maximal with respect
to not being finitely generated. Moreover, it is easily shown that B is a prime ideal of R, contrary
to our hypothesis. Therefore R is Noetherian.,

4. Quotient semigroups

l.et R and S be G-semigroups, and ¥ a homomorphism from R onto a subsemigroup of S. Let
A be an ideal of R. Then the extension A® of A is the ideal of S genecrated by W(A). Further-
more,let « be an ideal of S. Then the contraction «° of « is defined by « *=¥"'"(a)=¥""(a N
v(R)).

(4.1)Theorem. Let R be a G-semigroup, N an additive system of R and S=Rx. Let ¥ be the
canonical embedding of R into S=Rx. Then the following hlod.
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) For an ideal B of R, B*=1{b-n| b€B,nEN{, B**={x€R | x+n€B for some n€ N}.
) For an ideal # of S, f<"=2.

) For ideals A,B of R, (ANB)*=A*NB".

) If B is a finitely generated ideal of R, then (A:B)*=A":B".

)

)

For ideals «,f of S, («:B)=a":3°".

Proof. 'The proof, being routine, will be omitted.

(4.2)Theorem. Let R be a G-semigroup, and let N be an additive system in R. If {P.} is the set of
prime ideals of R which do not meet N, then {P:| is the set of proper prime ideals of Rx. If PE€
{P.} and if 1Qstis the set of P-primary ideals of R, then {Q5} is the set of P*-primary ideals of
Ru.

(4.3). Let iM. | 2| be a nonempty set of prime ideals of a G-semigroup R satisfying the follow-
ing conditions:

(1) There are no containment relations among distinct members of the set {M, | A{ .

(2) Each prime ideal of R contained in U, M., is contained in some M,.

If these two conditions hold, then {M:i | A | is the set of ideals of R maximal with respect to not

meeting N, where N=R-(Uea M,).
As a corollary of (4.3), we have the following.

(4.4)Corollary. If {Ps| B is the set of ideals of a G-semigroup R maximal with respect to not
meeting the additive system N in R, then U, {P;| 2| is the maximal ideal of Ru.

L.et S be a G-semigroup and R an extension G-semigroup of S. Then R is called an extension
semigroup of S,and S is said to be a subsemigroup of R.

(4.5)Proposition. Let S be a subsemigroup of a G-semigroup R, and let Pi,...,P. be prime ideals
of R such that SCU P;. Then SCP: for some 1.

Proof. Since 0€SCU P;, 0P« for some k. Then SCR=P..

(4.6)Remark. Let A be an ideal of a G-semigroup R, and let P.,...,P. be ideals of R such that
ACU Pi,and at most two of the ideals P; are not prime. Then it is not necessarily true that A
CP: for some 1 as the following example shows.

(4.7)Example. Let R=10,2,3,4,5,...1, A=12,3,4,5,..., P1=(2) and P.=(3). Then ACP,UP., but A
¢ Pi,AC P,

For an ideal P of a G-semigroup R, set Re-¢ by Re. Then R, 1is called the locarization at
P. If Ais an ideal of R and P 1s a prime 1deal of R containing A, then P is called a minimal prime
ideal of A if there is no prime ideal Po of R such that ACP,CP. Each ideal B of R has minimal
prime ideals.
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Let P be a minimal prime ideal of an ideal A of R. We consider an extension from R to Re.
Then P* is the unique minimal prime of A: that is, P*=yA® . A**={x€R|x+y€A for some y
€ R-Pl is P-primary. This ideal A*c is called the isolated P-primary component of A.

The set {x€ER | x+y€kP for some y€ R-P}, where kP=1{a,+...+a« | a; €P,1=i=<k} is called the

k th symbolic power of P and is denoted by P'*.

5. Some fundamental properties of quotient semigroups

(6.1)Proposition. Let Sy be a quotient semigroup of S with additive system N of S and M be the
saturation of N. Then M={x€S | -x€Syl.

(5.2)Proposition. let N be an additive system in a G-semigroup S and M be the saturation of N.
Then Sy=Su.

Proof. It is clear that SxSSw. Conversely, let x=r-m&€Sy, r€S, meM. By hypothesis, we have
n=m-+tEN with t€S. Since r+t€S, n€N, we have x=(r+t)-n€Sx. llence SuCSs.

(5.3)Lemma. If N is an additive system in a G-semigroup S,and P is a prime ideal of S not meeting
N, then Se=(Sx)esy, where PSx=1{s-n | sEP,nEN|.

Proof. Let x=r-s€Sp, r€S, s€S-P. Then, since r-n€Sy, s-nESy-PSx for n€N, we have x=r-s=(r-
n)-(s-n) €(Sy)rsy. Hence we can define a mapping £ :Se—(Sx)ssw.

Conversely, let x=(r-n:)-(s-n:)€(Sx)esx, r€S, s€ES-P, ni,n:EN. Then we have x=(r+n.)-(s+
n:)€Ss. Hence we can define a mapping o :(Sx)esyv—=Se. Then we have poo =cso0p =1(the identity
map).

(5.4)Lemma. Let {P.l.cx be a set of prime ideals of S such that {P.| satisfies the conditions of
(4.3}. If we set N=S*U iga pl, then SN:naE;\ ‘SPJ.

Proof. The proof is straightforward and will be omitted.

(5.5)Corollary. Each quotient semigroup of a G-semigroup S is an intersection of locarizations of
S.

Proof. This immediately follows from (5.4).
6. Cancellation laws for ideals
An element s of a semigroup S is called cancellative if s+a=s+b implies a=b for a,beS.
Let C be the set of cancellative elements of S. If C+ ¢, then C is a subsemigroup of S. If t€S is

invertible(see section 7), then t is cancellative.

(6.1)Theorem. Let A=(ai,...,ax) be a finitely generated ideal of S. If B,C are ideals of S such that
A+BCA+C, then kBCC.

Proof. Tor b,..., b« €B, we need only to show that b:+...+be€C. By hypothesis, a:+bi=a, +c;
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with ¢, €C. If i,=1, then bi=c¢: and bi+...+bi=ci+b.+...+b€C. Suppose that i,#1. Then
ai, +b.=ai,+ c. with c.€C. If i,=1, then a,+a:, +bi+b:=a,, +ai+c:+c: and so b, +b.=c: +
c:€C. Hence bi+...+bv=ci+c:+bs+...+b. €C. Iterating this procedure, we can find an integer
|1=k such thatbi+...+b =c;+...+c: €C, and then bi+...+bc€C,

(6.2)Corollary. Let A=(ai,...,ax) be a finitely generated ideal of S. If B,C are ideals of S such that
A+B=A+C, then kBEC and kCCB, and hence VB =+C .

Proof. Let A=(a:,...,ax). Then, by (6.1), kSCB, since A+S=A+B. Hence 0€B, i.e., S=B.

(6.3)Corollary. Let A be a finitely generated i1deal of S such that 2A=A. Then A=S.

Proof. Since A=2A=A+ACA+SCA, A+A=A+S. Then, by (6.2), JA =4S =S, and so A=S.
A fractional ideal F of S is called a cancellation ideal if A+ICA+J=ICJ for all I,JEF(S).

Let T be the quotient group of a G-semigroup S and let C be the set of all cancellation
fractional ideals of S.

(6.4) Theorem.

(a) For FEF(S), the followings are equivalent:

(1) FeC.

(2) If \,F.€F(S), F+F,CF+F;:, then F,CF,.

(3) [Fi+F:F]:=F, for each F, €F(S).

(b) If {Fit?-, is a finite subset of F(S), then F.+...+F.€C&F, €C for each i.

(c) If Iy, ...,F's€(S) such that F=F +...+F.€C and k€N, then kF'=kIF, +...+kF.. HEspecially, if
F=(ai,...,as), then kF=(ka.,... ka.).

Proof. (a),(b): Straightforward.

(c);: We need only consider the case where n and k are greater than 1. In this case,

(n(k-1)+1)F is the union of all ideals eiFi+e:F:+...+e.F., where ei+e:+...+e.=n(k-1)+1.

In e Fi+...+e.F., at least one of the e; must be greater than or equal to k. Hence

(n(k-1)+DF C(kF.U...UkF.)+(n-1)(k-1)F. Since (n-1)(k-1)F is a cancellation ideal, kFCkI", +...
+kF.. The reverse containment is clear,

7. Invertible ideals
Let T be the quotient group of S. An element AET(S) is said to be invertible if there
exists BE(S) such that A+B=S.

(7.1)Theorem. If S is a G-semigroup, then the following hold.

(1) If F+B=S,with F,BEF(S), then B=F"'=[S:Fl:={x€T | x+FCS| and F is principal.

(2) For 1 €8, (u) is invertible.

(3) If A is an integral ideal of S and if r is an element of T, then A-r is invertible if and only if A
is invertible.

Proof. (1) There exist fEF,bEB such that f+b=0. Let x€F'. Then x=(x+f)+beS+bCB.
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Hence "' C€B, and so, ['"'=B, since BEF"' always holds,
Let f+b=0 and f’€F. Then we have f'={"+b+f€f+SCF. Hence (f)=F.
(2) If I=(x), then I''=(-¢) and I+1"'=8S.
(3) By (1) and (2), FEF(S) is invertible if and only if F is principal. Hence (3) is evident.

(7.2)Theorem. Let F\,F; be fractional ideals of S such that F: is invertible and such that ', S F,.
Then there exists an integral ideal A of S such that Fi=A+F..

Proof. We have F\=F + ", +Fz'. If we set A=F,+F%', then F'=A+F, and A is an integral ideal
of S.

An ideal A of S is called a general multiplication ideal if A is a factor of each ideal of S which
it properly contains, that is, if B is an ideal of S such that BCA, then B=A+C for some ideal C
of S.

(7.3). An ideal A of S is a general multiplication ideal if and only if A is a principal ideal.

Proof. Assume that A is not principal. lLet a€ A. Since (a)CA, there is an ideal C such that
(a)=A+C. Then S=(A-a)+C, and so A-a is invertible. Thus, by Th. (7.1).(3), A itself is invertible,
and so A is principle. This is a contradiction.

Conversely, suppose that A=(a) is principal and BCA. Then C=B-a is an ideal of S, and
B=A+C.

(7.4)Theorem. Let P be an invertible proper prime ideal of a G-semigroup S. N
(1) If x€kP-(k+1)P and yetP-(t+1)P, x+y€ (k+t)P-(k+t+1)P. Consequently, if P,= kﬂl kP 1s
nonempty, then Py 1s a prime ideal.

(2) {kPI&™ 1 is the set of P-primary ideals.

(3) If Q is a primary ideal of S such that YQ CP, then Q is contained in Po,
(4) 1f A is an invertible ideal of S properly containing P, then A=S.

Proof. (1) By hypothesis, (x)=A+kP and (y)=B+tP, where A,B are ideals of S, not contained in
P. Then it follows that (x)+(y)=A+B+(k+t)P, where A+BZ P. Hence x+y€ (k+t)P\(k+t+
LB, ;

(2) For each k€N, vkP =P. If x+yekP, where x€S\P, yES, then part (1) shows that y€k
P. Thus kP is P-primary.

We next assume that Q is P-primary. Since QDP., Q € nP for some n>0. we choose k such
that QCkP, Q € (k+1)P. Then Q=A+kP for some ideal A of S and AZ P. This implies that k
PCQ, i.e.,Q=kP.

(3) Assume that yQ =P'CP. Since P is invertible, Q=A+P for some ideal A of S. Then,
since Q is primary and PCP', we have ACQ and so Q=Q+P. Therefore, Q=Q+P=Q+2P=..., and
so QENkP=P;.

(4) We have P=A+DB for some ideal B of S. Since P is a prime ideal and A € P, we have B
CP so that B=P. Hence P=S+P=A+P, and so A=S.
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