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ABSTRACT 

The multiplicative ideal theory has been developped for commutative rings. The aim of this 

paper is to give a semigroup version of the multiplicative ideal theory of commutative rings. In 

this paper we shall prove some fundamental properties of ideals of G-semigroups. Here we call 

a torsion-free cancellative abelian additive semigroup with identity a G-semigroup, where G 

stands for Gilmer. It is expected that the ideal theory of G-semigroups is more simpler than that 

of commutative rings. But the multiplicative ideal theory of semigroups is itself interesting and 

important. For the multiplicative ideal theory of rings, we refer to [Gl] and [LM]. 

1. Introduction. 

An abelian (additive) semigroup (S, +) with identity is called a monoid. The identity of a 

monoid S is denoted by 0. A monoid S is sa」dto be cancellative,if a+b=a+c where a,b,c are in S, 

then b=c, and Sis said to be torsion-free if ns=nt, where nEN and s,t in S, then s=t. In [NJ, a 

cancellative monoid is called a gradin目monoid.

An abelian (additive) group G is called torsion-free if na=O with n E N,a E G,then a=O. A 

subsemigroup SつlOfof a torsion-free abelian group is a torsion-free grading monoid. In our paper 

we call a torsion-free grading monoid a G-semi自roup,where G stands for Gilmer. 

Let S be a G-semigroup. A subset I=/=-¢of S is called an ideal of S if S+ I~I. For each xES, 
set (x)=x+S. Then (x) is an ideal of S. An ideal I of Sis called a principal ideal if I=(x) for some 

x ES. Jf each ideal of S is principal, then S・11 d 1s ca e a principal ideal semi—音roup ( for short, 旦~).

An element x of S is called a unit廿x+y=Ofor some yES. For xES, x is a unit if and only 

if (x)=S. If Bis a nonempty subset of S, then B+S=lb+s I bEB,sESf is the ideal of S科enerated
by B. An ideal A of S is called四匹竺 ifAキS. An ideal A f S o 1s called idempotent if A= A+ A. 

Let U be the set of units of S. Then M = S"'-U is an ideal of S that contains all other proper 

ideals of S and is called the maximal ideal of S. If 1 is an ideal of S, then the radical of I, denoted 

by 孔， isdefined to be /I =lsES I nsEI for some nENf. One easily see that /I is an ideal of S. 
Let PCS be an ideal. Then Pis called a prime ideal if s,+s2EP for s,,s2ES⇒ s, EP or s2 E 

P. An ideal Q of Sis called a primary ideal if s,+s2EQ ands, 庄Q⇒ ns2 E Q for some n EN. For 

a pnmary ideal Q of S, んfis a prime ideal. ぷfis called a prime ideal belon只ingto Q. Q is called 
a pn mary ideal belong mg to面， orQ is fQ -primary. 
If A is an ideal of S such that A can be expressed as a finite intersection of primary ideals A= 

n↑ =¥ 悠 thenth・ 1s representation of A is said to be a shortest representation of A 1f ni *, QiキA
for each 1:;;;;i;;;;n, and Q,, ● ..  , Q, are m叩叫収 d応いnぱ
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(1.l)Proposition. Let A= n↑ = 1 Q, be a shortest representation of A. Then the number n 1s 

uniquely determined, that is, if A= n~= 1 Q;'be another shortest representation of A, then n = m. 

Two elements a and bin Sare said to be associated if there exists a unit u such that b=a+u(or 

equivalently, a=b+v for some unit v). Let s,s'ES. If s+a=s'for some aES, thens is called a 

divisor of s'and s'is called a multiple of s. In this case, we denote s I s'. Note that divisors of 0 

are units of S. If s I s'and s'I s, then s and s'are associated. An element s of S is called an 

irreducible element if it satisfies the following conditions: 

(1) s is not a unit. 

(2) lf s=s1 +s2 (s, ES), then either s1 or s2 is a unit. 

A G-semigroup S is called a unique factorization semi科roup(forshort, a辺翌） if it satisfies the 

following conditions: 

(UFl) Every non氾nitof S can be written as a finite sum of irreducible elements. 

(UF2) If a=p1 + p2 + ... +p" =q1 +q2 +…+qm, where p; and qi are irreducible, then n=m and on re-
numbering p 1 and q 1 are associated for each i. 

In the case of n=O, we refer that a is a unit. 

We shall consistently use Z to denote the ring of all integers, Z。todenote the set of nonnegative 
integers, and Q to denote the field of rational numbers. The symbol~w且l denote containment; C 

denotes proper containment. If A and B are sets, then A "'-B denotes the set of elements of A which 

are not in B. I A I denotes the cardinal number of the set A. We use¢to denote the empty set. 

2. Additive systems 

Let T be a nonempty subset of a G-semigroup S. T is called an additive system in S, tn case, 
1f t, t'ET, then t+t'ET. For an addit' 1ve system T, the quotient semi印roupST is defined as follows: 

ふ=ls-tI sES,tETf. 

It is easy to see that ST is a G-semigroup. Especially, if T=S,then the quotient semigroup Ss = 

lsi-s2 I s,,s2ESf is called the quotient科roupof S, and is denoted by q(S). Note that q(S) is an 

abelian (additive) group. 

(2.l)Hemark. 

(1)しetS be a G-semigroup. Then S is torsion-free if and only if the quotient group is torsion-free. 

(2) S is a canncellative subsemigroup of q(S) and the subsemigroup of G=q(S) generated by S 

and l-s I sESI is G. Each element of G is a unit of G. 

(2.2)Remark. Let I be an ideal of a G-semigroup S. Then I is a prime ideal of S if and only if 

S"'I is an additive system of S. 

Let A be an ideal of Sand Ta subset of S. Then, set A-T=lxES I x=a-t, aEA, tETf. 

Proof of (1.1). Set必 =P1,ぬ~'=Pi'. Let P be any one of P1, ... ,P,. Then it is enough to show 
that P=P; for some j. Suitably changing the order, we assume that 

P,, ... ,P,-,CP, P,=P, P,+ 1, .. ,P, 江P; Pi', ... ,P:cP, P',+1, .. ,Pぶ年 P.

Set S-P=T. Then we have 

A-T=Q1 n ... nQ,=Q:n ... nQ',. 

If pキP; (1~\/ j~t), then there exists a E P such that 
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a生p;U ... UP;UP1 U ... U P,-1. 
Furthermore, there exists k EN such that 

kaEQ, and ka庄Q;u... UQ;UQ1 U…UQ,-1. 

Thus we have 

Q; :ka=Q; (1~ 溢 s-1),Qi:ka=Q; (1紀 ~t),

where A:U= lxES I U+xcAf for an ideal A and a subset U of S. 

Therefore it follows that 

(A-T):ka=(n□ Q;):ka=Q1 n ... nQ,-1 

and 

(A-T):ka= (nい Qj):ka=Q;n…nQ;=Q1n…nQ,. 
But this is a contradiction. 

(2.3)Lomma. Let T be an additive system of a G-semigroup S and let A be an ideal of S such 

that AnT=ゆ. Then there is a prime ideal P of S such that A~P and Pn T=¢. 

Proof. By Zorn's Lemma, there is a maximal ideal P in the set L =!JI J is an ideal of S such 

that A~J and JnT=¢f. If x,yES"--P, then PU(x) and PU(y) meet Tso that x+s1, y+s2ET 

forsome s1 ,s2 ES. Then x+y+s1 +s2 ET and so x+yE S"--P. Hence P is a prime ideal of S. 

Let T be an add山vesystem of S. Then the set ls ES I s divides some element of T f is called the 

saturation of T. If the saturation of T coincides with T, then Tis called a saturated additive system. 

(2.4)Proposotion. Let T be an additive system in S, and let T'be the complement of T in S. The 

following cond山onsare equivalent: 

(1) T is saturated. 

(2) T'is the union of a set of prime ideals of S. 

Proof. (1)⇒ (2): We show that T'= U lP, IP, is a prime ideal of Snot meeting Tl. ~is clear. 

Conversely, if xET', then (x)nT=¢, and so by (2.3), (x)~P, for some prime ideal P, such that 

P, nT=¢. Hence~also holds. 

(2)⇒ (1): This is evident. 

(2.5)Thoorom. Let T be the quotient group of a G-semigroup R and let S, and 82 be subsemigroups 

of T containing R such that S, C82. 

(1) [f 82 is a quotient semigroup of R, then 82 is a quotient semigroup of 8,. 

(2) [f 8, is a quoいentsemigroup of R and if 82 is a quotient semigroup of 8,, then 82 is a quotient 

semigroup of R. 

Proof. (1): Suppose thatふ＝恥， whereN is an additive system of R. Then it is easily seen that 

ふ=(S,)N.

(2): Let S,=RM, and S2=(S,)ぃ. Then we shall show that S戸 RM,where M=  lxER Ix is a unit 

of S2 I. Since M, ~M. S, =R町 ~RM. Now let uEM2こS,. Then u=r-v for some rE R, v EM,, and 

then we have r=u+v, where u and v are units of S2. Hence rEM and so -u=v-rERM. Thus-M戸

l-u I uEM 2l~RM, and then S2=(S,)M,~(RM)M , =RM, i.e., S2=RM. 
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If R is a G-semigroup and S is a semigroup such that RCSCq(R), then S is said to be a 

oversem1即roupof R. By (2.1), S is torsion-free, and so is a grading monoid. 

(2.6)Corollary. If A is an ideal of a G-semigroup Rand if !P, f ,., is the set of prime ideals of 

R containing A, thenむ¥=nPし

Proof. This follows from (2.3). 

3. Fractional ideals 

Let R be a G-semigroup and let T be the quotient group of R. A subset F of T is said to be 

a fractional ideal of R if R + F口Fand r+ FごRfor some r ER. Each ideal of R is called an inte音ral

ideal. For t 1 , ... ふET, set (t 1 , ... ふ）=U(t.+R). This is a fractional ideal of R. The set lt1, ... ,tnl 

is called a科eneratingset or a set of generators. A fractional ideal A of R is called finitely 

generated if there exist a finite set l t 1, ... , t" I of generators such that A= (t 1 , ... , t"). If there exists 

t ET such that A= (t), then A is said to be a principal fractional ideal. 

Denote by F(R) the set. of fractional ideals of a G-semigroup R, and by F* (R) the set of 

finitely generated fractional ideals of R. If F1 ,l心EF(R), then F1 + F2 is defined by lx+y I x E F1, 

yE F2 I. And we define [F1 :F山 tobe lxET I x+F2<:;F1 I. If F1 and凡 areintegral ideals,then 

F1 :F2 is defined by lxE RI x+ F2 <:;F1 I. 

(3.l)Theorem. Let R be a G-semigroup and let T be the quotient group of R. 

(1) F(R) is closed under addition and finite intersection. If F,,F2EF(R), then [F,:FふEF(R).

(2) If F,,F2EF(R) and if S, is a set of generators for F,,then S,US2 is a set of generators for 

F,U凡 and ls+t I sES,,tES2I is a set of generators for F,+F2. F・(n)is closed under union. 
(3) If /¥ is an integral ideal of R and if r is an element of R, then A-r is a fractional ideal of R 

(4) If FE F(R), then there is an integral ideal A of n and rE R such that F=A-r. 

Proof. The proof is straightforward, and we omit 1t. 

If each ideal of S is finitely generated, then S is said to be a Noetherian sem1group. 

(3.2)Theorem. If each prime ideal of a G-semigroup R is finitely generated, then R is Noethenan. 

Proof. Suppose that R is not Noetherian. Then there exists an ideal B of R maximal with respect 

to not being finitely generated. Moreover, it is easily shown that B is a prime ideal of R, contrary 

to our hypothesis. Therefore R is Noetherian. 

4. Quotient semigroups 

しct11 and S be G-semigroups, and'i'a homomorphism from R onto a subsemigroup of S. Let 

A be an ideal of R. Then the extension A'of A is the ideal of S generated by'i'(A). Further-

more.let a be an ideal of S. Then the contraction a'of a is defined by a'='i'―I (a) = ¥jl-I (。 n

'i'(R)). 

(4.l)Theorem. Let R be a G-semigroup, N an additive system of R and S=RN. Let'V be the 

canonical embedding of R into S= RN. Then tho following hlod. 
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(1) For an ideal B of R, B'= lb-n I bE B,nE NI, B" = lxE RI x+nE B for some nENI. 

(2) For an ideal (3 of S, (3 "= (3. 

(3) For ideals A,B of R, (AnB)'=A'nB・・
(4) If B is a finitely generated ideal of R, then (A:B)'=A':B・・
(5) For ideals a,/3 of S, (a:/3)'=a':/3'. 

(6) For an ideal B of R, (昂）・＝蔀．

Proof. The proof, being routine, will be omitted. 

(4.2)Thoorem. Let R be a G-semigroup, and let N be an additive system in R. If lP, f is the set of 

prime ideals of R which do not meet N, then IP; f is the set of proper prime ideals of RN. If PE 

lP。fand if l Q~f is the set of P-primary ideals of R, then I Qi f is the set of P'-primary ideals of 
R凡

鱈 . Let lM, I入fbe a nonempty set of prime ideals of a G-sem1group R satisfying the follow-

ing conditions: 

(1) There are no containment relations among distinct members of the set lM, I II f . 

(2) Each prime ideal of R contained in U, 闘 iscontained in some Mぃ

If those two conditions hold, then JM; I入fis the set of ideals of R maximal with respect to not 

meeting N, where N = R-(U店 A M,). 

As a corollary of (4.3), we have the following. 

(4.4)Corollary. If lPP I /3 I is the set of ideals of a G-semigroup R maximal with respect to not 

meeting the additive system N in R, then UP l P;; I (3 I is the maximal ideal of R凡

Let S be a G-semigroup and R an extension G-semigroup of S. Then R is called an extens10n 

sem1group of S,and S is said to be a subsemi匹oupof R. 

(4.5)JJroposition. Let S be a subsemigroup of a G-semigroup R, and let P1, ... ,P, be prime ideals 

of R such that SC U P,. Then SCP, for some i. 

Proof. Since OESCU P;, OEPk for some k. Then SCR=Pし

(4.6)Remark. Let A be an ideal of a G-semigroup R, and let P1, ... ,P, be ideals of R such that 

ACU P,,and at most two of the ideals P1 are not prime. Then it is not necessarily true that A 

CP, for some i as the following example shows. 

(4.7)Example. Let R= l0,2,3,4,5, …I, A=l2,3,4,5, ... I, P,=(2) and P2=(3). Then ACP,UP2, but A 

ct-P, ,A広P2.

For an ideal P of a G-semigroup R, set RR-r by Rp. Then R. is called the locarization at 

P. 1f A is an ideal of R and P is a prime ideal of R containing A, then P is called a minimal pnme 

ideal of A廿thereis no prime ideal P。ofR such that A~P。 CP. Each ideal B of R has minimal 

prime ideals. 

-11-



小山工業高等専門学校研究紀要 No.29 

Let P beam血malprime ideal of an ideal A of R. We consider an extension from R to RP. 

Then P'is the unique minimal prime of A': that is, P戸ふ•. A"=lxER I x+yEA for some y 
ER-Pl 1s P-primary. This ideal A" is called the isolated P-pnmary component of A. 

The set l x ER I x+ yE kP for some yE R-PI, where kP= I a1 + ... + ak I a, E P,l~i~k I is called the 
k th symbolic power of P and is denoted by p<k>. 

5. Some fundamental properties of quotient semigroups 

(5.1)Proposition. Letふ bea quotient semigroup of S with add山vesystem N of S and M be the 

saturation of N. Then M=  lxES I -xES叶．

(5.2)Proposiいon.Let N be an additive system in a G-semigroup S and M be the saturation of N. 
Then SN=SM. 

Proof. It is clear that SN<:;:;;SM. Conversely, let x=r-mESM, rES, mEM. By hypothesis, we have 

n=m+tEN with tES. Since r+tES, nEN, we have x=(r+t)-nESN. Hence SM<:;:;;S応

(5.3)Lemma. If N is an additive system in a G-semigroup S,and P is a prime ideal of S not meeting 

N, then Sr= (S叶rsN,where PSN=ls-n I sEP,nENI. 

Proof. Let x=r-sESr, rES, sES-P. Then, since r-nESN, s-nESN-PSN for nEN, we have x=r-s=(r-

n)-(s-n) E (SN)rsN. Hence we can define a mapping p :Sr→ (S砂PSN, 

Conversely, let x=(r-n1)-(s-n2)E(S豆rsN,rE S, sE S-P, n1 ,n2 EN. Then we have x= (r+ n2)-(s+ 

n 1) E Sr. Hence we can define a mapping a : (S豆PSN→ Sr. Then we have po a = a op = l(the identity 

map). 

(5.4)Lemma. Let JP, l,e, be a set of prime ideals of S such that JP, I satisfies the cond山onsof 

(4.3). If we set N=S-U入EA P,, then SN= n >EA • sぃ．

Proof. The proof is straightforward and w且1be omitted. 

(5.5)Corollary. Each quotient semigroup of a G-semigroup S is an intersection of locarizations of 

S. 

Proof. This immediately follows from (5.4). 

6. Cancellation laws for ideals 

An element s of a sem1group S is called cancellative if s+a=s+ b implies a= b for a, bE S. 

Let C be the set of cancellative elements of S. If C=I=-¢, then C is a subsemigroup of S. Jf t ES 1s 

invertible(see section 7), then t is cancellative. 

(6.1)'「hoorem.Let A=(a1, ... ,ak) be a finitely generated ideal of S. If B,C are ideals of S such that 

A+BcA+C, then kBCC. 

Proof. For b,, ... ,bkEB, we need only to show that b,+ ... +bkEC. By hypothesis, a,+b,=a,, +c, 
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with c1EC. If i1=l, then b1=c1 and b1+ ... +bk=c1+切+••• +bk EC. Suppose that. i 1キ1. Then 

ai J +b戸 a,,+ c2 with c2EC. If i2=l, then a1+a,,+b1+b戸 a,,+aげ C1+c2 and so b1 + b2 =c1 + 

c2 EC. Hence b1 +…+bk= c1 + c2 + b3 + ... +bk EC. Iterating this procedure, we can find an integer 
溢 ksuch thatb1 + ... +b1 =c1 + ... +c1 EC, and then b1 +…+bk EC. 

(6.2)Corollary. Let A=(a,, ... ,ak) be a finitely generated ideal of S. If B,C are ideals of S such that 

A+B=A+C, then kB~C and kCこB,and hence /B =兵〗

Proof. Let A= (a,, …, ak). Then, by (6.1), kSこB,since A+S=A+B. Hence OEB, i.e., S=B. 

(6.3)Corollary. Let A be a finitely generated ideal of S such that 2A=A. Then A=S. 

Proof. Since A=2A= A+ A~A +S~A. A+ A= A+S. Then, by (6.2), ./A=ぷ― =S,and so A=S. 

A fractional ideal F of S is called a cancellation ideal if A+ IC A+ J⇒ ICJ for all I,JEF(S). 

Let T be the quotient group of a G-semigroup S and let C be the set of all cancellation 

fractional ideals of S. 

(6.4)Theorem. 

(a) For FE F(S), the followings are equivalent: 

(1) FE C. 

(2) If F1 ,F国 F(S),F+ F1 CF+ F2, then F1 CF2. 

(3) [Fi +F:F]T=F1 for each F1 EF(S). 

(b) lf lF, f~ ~1 is a finite subset of F(S), then F1+ ... +F.EC⇔ F, EC for each i. 

(c) lf F1, ... ,F.EF(S) such that F=F1+ ... +F.ECand kEN, then kF=kF1+ ... +kF •. Especially, if 
F= (a1, ... ,a.), then kF= (ka1, ... ,ka.). 

Proof. (a),(b): Straightforward. 

(c): We need only consider the case where n and k are greater than 1. In this case, 

(n(k-l)+l)F is the union of all ideals e1F1+eふ +... +e. 凡， wheree1+e2+ ... +e.=n(k-l)+l. 

In e1F1+ ... +e.F., at least one of the e1 must be greater than or equal to k. Hence 

(n(k-l)+l)F C(kF1U ... UkF.)+(n-l)(k-l)F. Since (n-l)(k-l)F is a cancellation ideal, kFCkF1+ ... 

+ kF.. The reverse containment is clear. 

7. Invertible ideals 

Let T be the quotient group of S. An element A E F(S) is said to be invertible if there 

exists BE F(S) such that A+ B=S. 

(7.l)Theorem. If S is a G-semigroup, then the following hold. 

(1) If F+B=S,with F,BEF(S), then B=F―'=[S:F]T=lxET I x+FCSI and Fis principal. 

(2) ForμES, (μ) is invertible. 

(3) If A is an integral ideal of S and if r is an element of T, then A-r is invertible if and only if A 

is invertible. 

Proof. (1) There exist fEF,bEB such that f+b=O. Let xEF-1. Then x=(x+f)+bES+bCB. 
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Hence p-, こB,and so, p-i =B, since B<::F一1always holds. 

Let f+b=O and f'EF. Then we have f'=f'+b+fEf+ScF. Hence (f)=F. 

(2) If I=(μ), then r-1=(-μ) and I+Iーi=S.

(3) By (1) and (2), FEF(S) is invertible if and only if Fis principal. Hence (3) is evident. 

(7.2)Theorem. Let F, ,F2 be fractional ideals of S such that F2 is invertible and such that F, □ F2. 

Then there exists an integral ideal A of S such that F,=A+F2. 

Proof. We have Fi =Fi+ Fけ F2i. If we set A=Fi +四， thenFi =A十凡 andA is an integral ideal 

of S. 

An ideal A of S is called a g-eneral multiplication ideal if A is a f act~r of each ideal of S which 
1t properly contains, that is, if Bis an ideal of S such that BCA, then B=A+C for some ideal C 

of S. 

〖し翌 . An ideal A of S is a general multiplication ideal if and only if A is a principal ideal. 

Proof. Assume that A is not principal. Let a EA. Since (a) CA, there is an ideal C such that 

(a)=A+C. Then S=(A-a)+C, and so A-a is invertible. Thus, by Th. (7.1).(3), A itself is invertible, 

and so A is principle. This is a contradiction. 

Conversely, suppose that A=(a) is principal and BCA. Then C=B-a is an ideal of S, and 

B=f¥+C. 

(7.4lTheorem. Let P be an invertible proper prime ideal of a G-semigroup S. 
= 

(1) If xEkP-(k+l)P and yEtP-(t+l)P, x+yE (k+t)P-(k+t+l)P. Consequently, if P。=n kP 1s 
k=I 

nonempty, then P。isa prime ideal. 

(2) lkPI k竺1is the set of P-primary ideals. 

(3) If Q is a primary ideal of S such thatぷ CP,then Q is contained in Po. 
(4) If A is an invertible ideal of S properly containing P, then A=S. 

Proof. (1) By hypothesis, (x)=A+kP and (y)=B+tP, where A,B are ideals of S, not contained in 

P. Then it follows that (x)+(y)=A+B+(k+t)P, where A+B笙P. Hence x+yE (k+t)P"-(k+t+ 

l)P. 

(2) For each kEN, /: 託 =P. If x+yEkP, where xES"-P, yES, then part (1) shows that yEk 
P. Thus kP is P-primary. 

We next assume that Q is P-primary. Since QコPo,Q rI nP for some n>O. we choose k such 
that Q~kP, Q rI (k+l)P. Then Q=A+kP for some ideal A of Sand A rI P. This implies that k 
PこQ,i.e.,Q=kP. 

(3) Assume thatぷ =P'CP. Since P is invertible, Q=A+ P for some ideal A of S. Then, 
since Q is primary and PこP',we have A~Q and so Q=Q+P. Therefore, Q=Q+P=Q+2P=…, and 
soQ~nkP=P。.

(4) We have P=A+B for some ideal B of S. Since Pis a prime ideal and A rI P, we have B 
~p so that B=P. Hence P=S+ P=A+ P, and so A=S. 
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