LSACPにおけるスカート特性の研究(その4)

山下 進, 三野正洋*, 杉崎吉明**, 中村和弘**

A Research & Analysis of Characteristic of Skirts for LSACP (Part 4)

Susumu YAMASHITA, Masahiro MINO Yoshiaki SUGISAKI, Kazuhiro NAKAMURA

1.序論

筆者らは、LSACP (Low Speed Air Cushion Platforms)のスカートの振動現象に注目し、供試モ デルを用いた実験および有限要素法によるスカート周 辺の流れの数値シミュレーションを行ってきた^{1)ー10}。 前報⁹⁾では、スカートへの送気方式をA方式(付録参 照)として実験を行った。その結果、荷重位置による 振動範囲や振動数の変動傾向は、ある程度把握できた。 しかし、振動の大きな乱れは起こらず、バッファ運動 の発生には至っていないことが明らかになった。

そこで本研究では,

- 1) エアをスカートへ直接送気するC方式(付録参照) を採用し,
- 2)風量を無段階に調節できるようにし、
- 3) ビデオ画像による測定に加え,新たに音響的な測 定システムを導入し,

荷重位置,風量の違いによる振動範囲,振動数や圧力 室とスカートの内圧の測定を行い,バッフェティング の発生と傾向を明らかにすることを目的とする。さら に前報同様,スカート周辺の流れの様子を有限要素法 を用いて解析し,振動現象との関連性についても検討 する。

2. 実験装置

写真1,図1はそれぞれ実験装置およびその概略図 である。供試モデル(写真2)への送気方式は送風ダ クト,船体内部,スカート内部,圧力室の順序で送気 されるC方式とする。送風機には昭和電機製 EM-100T7を用いている。供試モデルは振れ止めで支えら

* 日本大学生産工学部専任講師

** 平成7年度機械工学科卒業生

れ,真っすぐ上方へ浮上するものとする。これにより, 供試モデルの変位は上下方向のみとなる。またスカー ト内圧,圧力室内圧測定のため,U字管マノメ ータを設置した。

写真1 実験装置

-71-

3. 実験方法

3.1 模型実験によるスカートの振動解析

振れ止めで支えられた供試モデルにエアを送気し, 真っすぐ上方へ浮上させる。次にスカートの短軸中央 部分に設置した4本の針をビデオカメラで撮影し,画 像から針先端の振動範囲を読み取る。図2にスカート に取り付けた針の位置を示す。また図3は,供試モデ ルに付けた座標軸と荷重位置の名称を示しており, YY'を長軸,XX'を短軸とする。図4に示すよう な測定システムを用いて,針のビデオ撮影と同時に長 軸,短軸の各中央付近に設置したマイクロフォンでス カートの振動音を測定し,シグナルアナライザーで分 析する。またU字管マノメータで,圧力室とスカート の内圧を測定する。

なお実験は、図3に示す各荷重位置に、0.5kgの荷 重を均等に負荷し、風量を0.066~0.113m³/sの範囲で 0.010m³/s刻みに変化させた。また測定回数は、振動 範囲については5回、振動数については3回とし、平 均値をとった。また内圧の測定は1回とした。

Ground 図2 針の取り付け位置

図4 測定システム

3.2 有限要素法による流れ解析

-72-

前報同様、スカート周辺の空気の流れが振動に何ら かの影響を及ぼしているのではないかと考え、有限要 素法により流速の数値計算を行った。流体は非圧縮性 非粘性流体と仮定し、2次元ポテンシャル問題として 扱った。解析条件としては、風量を0.085㎡/s,絶対 浮上高を0.0052mとした。解析モデルは、長軸方向断 面を対象にして解析を行った。図5は、数値計算に用 いた解析モデルと境界条件を示している。エア流入口 を入口、スカートから十分離れた場所を出口とし、ラ プラス方程式(1)を境界条件式(2)のもとで計算 した。

ただし, Φは速度ポテンシャルである。また,数値 計算に用いた要素分割図を図6に示す。

LSACPにおけるスカート特性の研究(その4)

4. 実験結果および考察

以下に示す模型実験の結果は、無負荷、荷重0.5kg を均等に長軸2および短軸3に負荷させたときのもの である。

4.1 風量による振動範囲の変化

図7,図8,図9は、風量と各針の振動範囲との関係を示したグラフである。無負荷の場合、風量の増加 とともに振動範囲も大きくなっていくが、風量0.094 m³/sを境に増え方が緩やかになっている。荷重を負荷した場合は、風量が0.085m³/s付近を越えると、振動範囲は急激に増加し、バッファ運動が発生すること が明らかになった。

図 6 要素分割図(節点数 874, 要素数 1433)

-73 -

4.2 風量による振動数の変化

図10、図11、図12は、風量とスカートの振動数との 関係を示したグラフである。これらの結果より、風量 が0.075m³/sを越えると振動数が急激に減少し、そこ まで長軸と短軸ではあまりなかった差が、この風量を 境にして大きく広がっていくのが分かる。そしてその 後、風量を増加させると、その差をほぼ一定に保ちな がら、緩やかに増加していくことが明らかになった。 この風量はバッファ運動の発生する直前の風量である ことから、バッファ運動と何らかの関係があると考え られる。

4.3 風量による圧力室とスカートの内圧差の変化 図13, 図14, 図15は, 風量と圧力室内圧およびスカー ト内圧の関係を示したグラフである。これらより無負 荷の場合を除けば, 風量0.085m³/s まで内圧の差が一 定であるが, この風量を越えると大きく開いていく。 この風量は, 振動範囲および振動数が急激に変化する 風量とも一致することから, 圧力室とスカートの内圧 差の変化が, スカートの振動に大きな影響を与える一 つの要因であると考えられる。

なお、これらのスカートの振動範囲、振動数および 圧力室とスカートの内圧差の、風量に対する変化は、 均等に荷重を負荷した場合において、荷重位置に関係 なく、ほぼ同じ傾向を示した。

4.4 測定値の標準偏差

前述したように、振動範囲については5回、振動数 については3回測定し、平均値についてグラフ化した。 表1,表2,表3に、これらの測定値についての標準 偏差を示す。無負荷の場合の短軸方向の振動数に多少 のばらつきがあるものの、その他の測定値にはほとん どばらつきはなかった。

4.5 スカート周辺の空気の流れと振動との関係

図16はスカート周辺の空気の流れをベクトル表示した図である。前報の結果(図17)とは異なり、エアは 船体内部よりスカートへ、スカートから圧力室へ流れ るため、スカート内の流れの方向は、曲線に沿った流 れになっている。また、スカートと圧力室との境界で あるエア脱出孔における流れの向きも一様である。そ れに対し、圧力室内における流れは不規則であり、こ のことがスカートの振動に影響を与えているのではな いかと考えられる。

-74-

図14 風量による内圧差の変化(長軸2)

図15 風量による内圧差の変化(短軸3)

表1 測定値の標準偏差(無負荷)

荷重条件		無負荷						
風量	[m³/S]	0.066	0.075	0.085	0.094	0.104	0.113	
振動数	標本平均	82.5	92.1	35.5	37.1	38.5	40.3	
(長輪)[Hz]	標本標準偏差	0.20	5.13	0.20	0.31	0.20	0.35	
振動数 (短軸)[Hz]	標本平均	82.6	88.8	65.8	69.3	71.9	77.9	
	標本標準偏差	0.24	2.79	0.42	2.42	3.28	4.72	
振動範囲 (P1)[mm]	標本平均	0.98	1.82	2.62	3.60	4.22	4.28	
	標本標準偏差	0.15	0.16	0.40	0.18	0.10	0.35	
振動範囲 (P2)「um」	標本平均	1.10	2.20	3.04	4.42	4.92	5.36	
	標本標準偏差	0.21	0.19	0.17	0.19	0.07	0.45	
振動範囲 (P3)「mm]	標本平均	1.22	2.16	3.64	5.00	5.38	5.54	
	標本標準偏差	0.17	0.10	0.43	0.24	0.43	0.31	
振動範囲 (P4)「mm]	標本平均	1.10	1.80	3.34	4.00	4.16	4.40	
	標本標準偏差	0.26	0.18	0.45	0.59	0.38	0.62	

表2 測定値の標準偏差(長軸2)

荷重条件		長輪2						
風量	[m³ / S]	0.066	0.075	0.085	0.094	0.104	0.113	
振動数	標本平均	89.2	94.0	37.5	39.0	40.7	42.0	
(長軸)[llz]	標本標準偏差	1.18	0.71	0.41	0.41	0.24	0.00	
振動数 (短軸)[Hz]	標本平均	89.3	95.8	70.0	72.3	74.3	76.5	
	標本標準偏差	0.94	1.03	0.71	0.24	0.24	0.00	
援動範囲 (P1)「mm]	標本平均	2.94	3.06	3.14	3.88	4.96	5.68	
	標本標準偏差	0.10	0.08	0.14	0.25	0.08	0.16	
振動範囲 (P2)「mm]	標本平均	3. 2.2	3.48	3.38	4.74	6.34	7.90	
	標本標準偏差	0.32	0.21	0.15	0.22	0.22	0.21	
振動範囲 (P3) [mm]	標本平均	3.26	3.66	3.62	4.84	6.22	6.48	
	標本標準偏差	0.38	0.20	0.32	0.39	0.15	0.29	
振動範囲 (P4) mm	標本平均	2.84	3.04	3.14	3.78	4.84	5.78	
	標本標準偏差	0.12	0.15	0.22	0.17	0.23	0.49	

表3 測定値の標準偏差(短軸3)

荷重条件		短軸 3						
風量	m³/S	0.066	0.075	0.085	0.094	0.104	0.113	
振動数 (長輪)[Hz]	標本平均	89.3	94.7	36.8	38.8	40.3	42.2	
	標本標準偏差	0.24	0.62	0.62	0.24	0.24	0.47	
振動数 (短軸)[Hz]	標本平均	89.5	97.0	69.3	72.7	74.7	84.0	
	標本標準偏差	0.41	0.41	0.24	0.47	0.85	0.71	
振動範囲 (P1)「mm]	標本平均	2.22	2.66	2.66	3.92	5.06	5.10	
	標本標準偏差	0.29	0.29	0.19	0.29	0.50	0.35	
振動範囲	標本平均	2.40	2.80	3.42	5.44	7.32	7.78	
(P2) [mm]	標本標準偏差	0.19	0.26	0.45	0.56	0.70	1.05	
振動範囲 (P3)「mm]	標本平均	2.84	3.56	3.04	4.52	6.32	5.74	
	標本標準偏差	0.15	0.49	0.15	0.58	0.75	0.39	
振動範囲 (P4)[mm]	標本平均	1.84	2.38	2.48	3.80	5.42	5.78	
	標本標準偏差	0.22	0.48	0.53	0.41	0.37	0.26	

図16 スカート周辺の空気の流れ(C方式)

図17 スカート周辺の空気の流れ(A方式)

これらのことから、C方式はスカートに対して安定 した送気ができるため、浮上高を大きくできる反面、 圧力室内の流れに乱れを起こすため、振動が大きくな りやすいと考えられる。

5. 結論

以上, エアの送気方式をC方式として, スカートの 振動範囲, 振動数, 圧力室内圧およびスカート内圧を 測定し, 風量や荷重位置との関係を考察してきた。ま たスカート周辺の流れの数値計算も行った。その結果, 内圧の差を大きく変化させる風量が, バッファ運動を 引き起こす大きな原因であると思われる。さらに, 圧 力室内に生じる流れの乱れもスカートの振動に影響を 与えることも明らかにされた。そして均等荷重の場合, 荷重位置は振動範囲, 振動数, 内圧差の傾向に無関係 であることも分かった。

最後にこの論文は、平成7年度卒業研究¹⁰に、一部 加筆したものである。

【参考文献】

- 三野、山下:小型ACV用の Bag Skirt の研究 第1報,第30回記念飛行機シンポジウム講演集, pp96-99(1992).
- 2)根村,野沢他:LSACPにおけるスカート特性の研究(その1),第31回日本機械学会学生員卒業研究発表会講演会講演前刷集,pp119-120(1992).
- 山下,三野他:LSACPにおけるスカート特性の研究(その1),小山工業高等専門学校研究紀要,第25号, pp91-98(1993).
- (4) 三野、山下:小型ACV用の Bag Skirt の研究 第2報,第31回飛行機シンポジウム講演集, pp484-485(1993).
- 5) 塩沢,渡辺他:LSACPにおけるスカート特性 の研究(その2),第32回日本機械学会学生員卒 業研究発表会講演会講演前刷集, pp 99-100 (1993).
- 6)山下,三野他:LSACPにおけるスカート特性の研究(その2),小山工業高等専門学校研究紀要,第26号, pp71-76(1994).
- (1) 山下,三野:LSACPのスカート振動解析 その1,第33回飛行機シンポジウム講演集,pp463-466(1995).
- 8) 木村, 儘田他:LSACPにおけるスカート特性の研究(その3), 第34回日本機械学会学生員卒業研究発表会講演会講演前刷集, pp100(1995).
- 9)山下,三野他:LSACPにおけるスカート特性の研究(その3)、小山工業高等専門学校研究紀要,第28号,pp61-66(1996).

杉崎,中村他:LSACPにおけるスカート特性の研究(その5),第35回日本機械学会学生員卒業研究発表会講演会講演前刷集,pp233-234 (1996).

【付録】送気方式について

スカートへの送気方式は、次の3つに分類される。

1) A方式:ファン→圧力室→スカート(図18)

B方式:ファン→圧力室,スカートへ半々に送気
(図19)

3) C方式:ファン→スカート→圧力室(図20)

図18 A方式

図20 C方式 (受理年月日 1996年 9 月30日)

-76-