2次元電磁界解析実験装置の開発 渡辺 わか子*、佐藤 太一、高田 直樹 上崎 省吾**

The Experimental System of the 2 Dimensional Electromagnetic Wave Scattering by Plane Wave

Wakako WATANABE, Taichi SATO, Naoki TAKADA, Shogo KOSAKI

1. はじめに

移動体通信の発展にともなって、ビル等による多重 反射や干渉、地下街等トンネル内の電波伝搬等が問題 となっており、種々の解析方法が開発されている。 しかし、解析方法の正当性を実証するための実験装置 としては十分なものが開発されていない。

電磁波の散乱問題は空間を3次元的に伝搬する平面 波を対象とする。しかし、装置として3次元的に広が る空間を作るためには壁や天井等に高価な電波吸収体 を張り巡らした広い空間を有する部屋と、空間の電磁 界に影響を極力与えないで空間の各部の電磁界強度を 測定するセンサー(アンテナ)等が必要となる。

本報告ではこれらに対する実験装置として、2次元 的に配置された平面状平面波を発生するピルボックス 状カセグレンアンテナと仮想的3次元空間を構成する

図1 ホーンアンテナの等位相面

* : 平成9年3月電子制御工学科卒業
* *: 群馬大学工学部

2枚の平行金属板を組み合わせた装置により平面状平 面波による散乱等を実験する装置を提案する。さらに、 実際に製作した装置によりその性能の有用性を実証す る。

2. 原理

2.1 平面状平面波の発生

平面波は平行2線路、同軸ケーブルあるいは送信源 から十分に離れた空間に見られる電磁波の姿態(モー ド)であり、電磁波の進行方向に対して垂直な面にの みそれぞれが直交している電界と磁界がある。

ホーンから放射される電磁波は図1に示すようにホー ンの放射源F_bを中心とする球面状平面波である。し たがってホーンのみで部分的でも近似的平面状平面波 を得るためには観測点をホーンから十分離れた距離に 置かねばならない。 本報告では、送信源からそれほ ど離れていない空間に平面状平面波をつくるため、図

図2 ホーンレフレクタと平面状平面波

2に示すようにホーンをパラボラ鏡の焦点F。に設置 したピルボックス状ホーンレフレクタを設計した。こ れにより、ホーンの入射口から放射された電磁波はホー ン部内を扇状に拡散伝搬し、パラボラ部で反射されパ ラボラの開口面で位相が揃い平面状平面波が構成でき る。

2.2 仮想的3次元空間

図3において、仮にマイクロ波を光と考えた場合、 導体板は鏡の役割を果たす。したがって、2枚の鏡を 上下に平行に置き、その隙間に例えば円柱体を挟み、 その間隙を覗けば、向かい合った鏡(鏡像原理)により、 上下に無限に伸びる円柱体(イメージ)が映し出される。 つまり、平行に置いた鏡の間隔と同じ高さの散乱体は 無限長散乱体と等価となり、仮想的な無限空間を創り 出せる。

3. 2次元電磁界解析実験装置

3.1 実験装置の概要

実験装置はホーン部、パラボラ部、整波部、測定部 等からなり、その製作した実験装置全体の外観を図4 に、装置の内部を図5に示す。この装置は周波数10.5 2GHz用であり、その概略寸法は図4に示すように全 体としてホーン部・パラボラ部1.9[m]×0.8[m]、整波 部・測定部1.0[m]×2.0[m]である。

3.1.1 ホーン部・パラボラ部

ホーン部とパラボラ部は一体になりビルボックスタ イプのホーンレフレクタを構成している。ホーンの発 信源をパラボラ部の焦点に設置しパラボラ開口部から

図4 2次元電磁界解析実験装置

2次元電磁界解析実験装置の開発

図6 実験装置内の過渡電界強度の計算結果

平面状平面波を放射できる。ホーン部はパラボラ部の 開口部からオフセットされているため放射される平面 波を乱すことはない。

3.1.2 整波部

FD-TD法を用いた数値計算により、実験装置内 部を伝搬する電磁波の過渡電磁界強度を求めた結果を 図6(a),(b)に示す。ホーン部内およびパラボラ部内 を伝搬している電波は、かなり複雑な波形をしている が、パラボラ部により反射され、徐々に位相が揃い始 めている。しかし、位相が揃うまでには一定の距離が 必要であることが確認された為、図4および図6(a) のように1.0[m]×0.5[m]の整波部を設けた。これに より、図6(b)に示すように測定部内に平面状平面波 が構成できる。

3.1.3 測定部

図4に示すように、2枚の平行金属板間で構成され、 後述のプローブを挿入する5本のスリット(x1、x2、 y1、y2、y3)をもうけている。この金属板の間隔は TEM波以外の不要電磁波モードが生じないようにλ /2よりやや狭くしてある。製作した本装置では使用 波長の半分が約14.25mmであることから、金属板の 間隔を14mmとした。

3.1.4 スタブ

測定部内の電界強度を測定するためのプローブ挿入 用測定スリットを設けたが、そのままでは電波が漏れ る可能性がある。このため、図7に示すようにスリッ トの厚み方向にλ/4のスタブを設けた。これにより、 この部分はλ/4端末開放伝送路と等価で、入力イン ピーダンスは0[Ω]となり、電波の漏れも外部からの 電波の進入も防げ、内部の電磁界にほとんど影響を与 えずに内部にプローブを挿入することができる。

3.1.5 電波吸収体

図5のように、測定部・整波部を構成する導体板の 平面波が入射する部分を除き、他の3方向の端に電波 吸収体を挿入した。これにより、不要な電波が測定部 内に反射する事を無くし、導体板が無限に広がってい

図7 測定スロットと挿入されたプローブ るとすることができる。使用した電波吸収体はカーボ ン粉末を混ぜたウレタンタイプを用いた。

3.1.6 プローブ

測定部の中の電界強度を測定するために、図7に示 すようにアース板付きモノポールアンテナをプローブ とした。測定スリットの間隔は約2mmとしたため、 プローブを構成するリジット同軸ケーブルは約1.5m m∮のものを採用し、プローブ挿入の深さや形状の変 動が起こらないように工夫した。

4. 実験システムの構成と測定

実験システムの構成を図8に示す。

この図のように、実験は、ホーン部端に取り付けられ た発信器によって10.52GHzの電磁波を装置内に入射 し、測定部の測定スリットに挿入されたプローブで測 定部内の電界を検出し、それを同軸ケーブルでスペク トルアナライザーに接続し電界強度を読みとる。順次 プローブを測定スリットに沿って滑らせて挿入位置を 変え、測定を繰り返す。

図8 実験システムの構成

5. 測定結果

5.1 平面波の確認

測定結果を図9~図10に示す。図9は電波伝搬方 向に対して垂直方向の測定スリットy1の測定結果と 計算結果を示している。点は測定結果を表し、実線は FD-TD法による数値計算結果を示している。数値 計算結果と測定値はほぼ一致している。しかし、測定 スリットの端にある電波吸収体のところで実験値と多 少異なっている。これは、数値計算をする際に電波吸 収体の存在を考慮に入れなかった為であると思われる。 図10は測定スリットx2の測定結果を示している。 この結果から電波伝搬方向に対しほとんど減衰してい ないことが分かる。これは、測定部内を伝搬する電磁 波が球面あるいは扇状平面波でなく平面状平面波であ ることを示している。

図10 伝搬方向(y)の電界強度実測値

5.2 角柱による散乱

図11は、測定部の測定スリットの交点(x₁、y₃) に挿入した金属角柱(アルミ箔で覆った発泡スチロー ル9.1cm×9.1cm×1.4cm)によるx₁方向の電界強度の 測定結果とFD-TD法による計算結果を示す。

この結果から、角柱の前面の入射波と反射波が干渉し 大きな定在波を生じさせている状況がはっきりと測定 でき、計算結果とよい一致を見た。角柱の後ろ側は角 柱の側面からの回折波であり、レベルが前面に比べ20 dB以上減衰し、ノイズレベルに近づいているためはっ きりとした結果は得られなかったが、レベル的にはほ ぼ計算結果と一致している。

図11 金属角柱の前後方向の電界強度(実測値と計算値)

6. むすび

測定結果より本実験装置は平面状平面波を実現する ことが確認された。また、角柱による散乱の測定結果 も計算結果とよい一致をした。以上から、平面状平面 波による散乱実験や回折実験に十分活用でき、この種 の理論解析の正当性を示すのにもこの実験装置は有効 であるといえる

最後に、本実験装置の製作にあたり、御協力頂いた工 作工場の鷹箸技官に、また、数値計算において御協力 頂いた群馬大学の菅野靖夫氏に深謝致します。 本報告の角柱の実験データを測定された電子制御工学 科5年杉本恵君に感謝いたします。

文献

- 1 内田一徳他:学会誌 Vol.J79-C-I No.7 p.210-216
- 2 細野敏夫他:学会誌 Vol.J62-B No.7 p.690-697
- 3 安浦亀之助他:学会誌 Vol.J69-B No.2 pp.198-205
- 4 星野純、山野文雄:2次元実験装置およびルーネベ ルグレンス^{*}のマイクロ波特性実験、平成7年度 群馬大学工学部電子電気工学科学士学位論文
- 5 上崎省吾:電波工学、現代電子電気情報講座
- 6 電子通信学会:アンテナ工学ハンドブック、オーム 社
- 7 長谷部望:電波工学、コロナ社
 - 〔注〕学会誌:電子情報通信学会誌

(受理年月日 1997年 9 月29日)