単一磁極板による独楽の磁気浮上の解析 電子制御工学科金野茂男、常盤誠、外山裕一

Analysis of Magnetical Levitation of the Tops by Single Magnetic Plate.

KINNO Shigeo, TOKIWA Makoto, TOYAMA Yuichi

1. はじめに

株式会社増田屋コーポレーションが、商品名「U-CAS」で販売している玩具は、独楽が基台の上空に 浮かんで回転し続け、まるで独楽が無重力空間の世界 にいるような感覚をもたらす(写真1)。なを、この 商品名は「浮かす=ukasu=u-casu」から きているように聞いている。本研究ではこのU-CA Sを実験的に分析し、また実験結果と対照しながら磁 界の理論モデルを仮設し、それに基づいた磁界の数値 シュミレーション解析を行った。

その結果、U-CASの独楽の浮上原理を明瞭に解 析することができた。

2. U-CASについての解説

U-CASは、正方形型の板磁石が内蔵されている 正方形型プラスチック基台(外形は縦12.5cm×横12.5 cm×高さ1.8cm。この内部一杯に正方形型平板磁石が 内蔵されている)、浮上する独楽(この内部にも磁石 が入っている。高さ4.0cm×最大直径約3.4cm、質量約1 9g)、最初に基台の上で回転自立させた独楽を基台上 空の浮遊点まで持ち上げるための正方形型の透明な薄

写真1 基台数cm上空で、独楽が空中 浮遊をし続けているときの実写。

いアクリル板、基台の水平度を微妙に調節するための 2枚のアクリル製楔、独楽の重量調整用の各種リング (真チュウ製及びアクリル製)及びそれらを独楽の回 転軸に固定するための小口径のゴム製凹リング、の一 式からなっている。

基台及び独楽に鉄や磁石を近づけることで、これら 両方の部品の内部には磁石が内蔵されていることが簡 単に確認できる。従って、独楽が基台上空で浮遊する のは、独楽に鉛直方向下向きに作用する重力と、独楽 に鉛直上向き方向に作用する、これら2つの磁石の存 在による磁気反発力の釣合で実現されているのであろ うことが容易に推定される。「独楽が空中に浮く」こ とは、これで説明されると思われるが、その浮遊状態 が「独楽が飛び上がって去ったり、落下したり、また 水平方向に飛んでいかず、自転している限り安定して 浮遊し続ける」ことは、これだけでは説明できない。

U-CASのキットで、独楽の空中浮遊を実現させ るための方法の詳細は、そのキットに付属している説 明書に譲るが、大まかに説明すると次の通りである。

周りに金属のないしっかりした水平な台上で、基台 を水平に置く。そして、基台の上にアクリル板を乗せ る。基台の中央付近で手でまず独楽を回転させる。基 台と独楽の間に作用する磁気反発力により、最初は難 しいが、何度もやっているうちにそのコツが飲み込め、 そのうち容易に基台の中央付近で独楽を回転自立の安 定状態とすることができる。

基台の中央で回転自立している独楽の乗ったアクリ ル板を水平に保ちながら、ゆっくりと上方に持ち上げ ていくと、基台の数cm上方のあたりで、独楽は持ち上 げているアクリル板から「独りでに」離れ、フワッと 浮き上がり、空中浮遊状態に入り、独楽の回転が持続 している間安定して浮かんでいる(写真1の状態)。

まず、最初からこううまくはいかない。基台の水平 度の微妙な調整、独楽の重量の微妙な調整が必要であ

図1 独楽の回りの磁束密度ベクトルの分布。 右下部に100Gの大きさを線分で示している。

る。が、いったんそれらの条件が分かると、次回から は容易に空中浮遊を再現することができる。

独楽の回転速度が落ちてくると、独楽の才差運動が 大きくなり、あっという間に基台上に落下する。 謎だ らけの数分間の独楽の空中浮遊である。

3. 磁場(磁束密度)の測定

基台と独楽が作り出す磁界の磁束密度分布状態を、 ホールセンサー式のガウスメータを用いて測定した。 センサー部のホール素子の大きさは約1mmで、分解能 は約1Gである。

独楽は回転対称なので、独楽の回転軸を含む平面の 内の片平面を測定面とした。測定点は測定面を約5mm メッシュに分割した各格子点で、回転軸に平行な磁束 密度成分と垂直な磁束密度成分に分けて測定した。測 定領域は独楽から横へ約50mm、上へ50mm、下へ40mmで ある。得られたデータを回転軸に関して鏡映投射し、 自作の平面内ベクトル描写プログラムにより、空間各 測定点における磁束密度ベクトル分布とした。得られ た結果を図1に示す。図の中央部の交叉している2つ の長方形がほぼ独楽の外形である。矢印の始点が測定 点、矢印の長さが磁束密度の大きさ、矢印の向きが磁 界の向きに対応している。

黒板などに書類を止めるために、一般に販売されて いるマグネットが多種ある。その中で、フェライト製 の円形状のマグネットとリング状(中心部が開いてい る)マグネットの作る磁界を測定してみると、U-C ASの独楽の磁束密度の分布状態は、これらのうちで リング状マグネットのものとほぼ一致し、かつ磁界強 度もほぼ同じ程度であることが分かった。U-CAS の独楽を破壊して内部の状態を観察はしていないが、 この結果より、独楽の内部にはフェライト製のリング 状マグネットが内蔵されていると予想した。このこと は、一般市販のリング状マグネットで作成した独楽で も、U-CASの独楽と全く同様に空中浮遊させるこ とができる可能性を示唆している。この実験結果につ いては後述する。

基台の作る磁界の磁束密度分布の測定は3通りで行った。

- 測定1.基台の中心垂直線上(図2の(1))での 垂直成分
- 測定2. 基台から一定の高さにある基台に平行な水 平面内(図2の(2))での垂直成分
- 測定3.基台の中心垂直線を含み、基台の対角線を 含む平面内(図2の(3))での磁束密度 ベクトル

図3中の実線の曲線が測定1で得られた結果である。 基台の中心垂直線上近傍における磁東密度はほとんど 垂直成分だけであり、水平方向成分を持っていなかっ た。また、磁界の向きは常に中心垂直線上向きであっ

た。これらのことは測定3の結果からも分かるであろ う。U-CASの基台の測定1の結果と比較・対照す るため、基台と同程度・同型状の市販されている平板 磁石についても同様の測定を行った。その結果が点線 の曲線である。これら両者には明確な相違が見られる。 市販磁石では磁石面から離れるにつれて磁束密度は単 調に減少していく。が、基台の場合には、基台の中心 点から垂直上方の約1cm~2cm前後の高さの所に磁束 密度の極大値が存在し、磁束密度は基台に近づくにつ れて(より磁石本体に近づくのであるが)小さくなっ ていることが明らかとなった。この磁束密度の極値の 存在が独楽を基台上空数cmの所に浮遊させている原動 力の1つになっているものと断定できよう。

図4が測定2で得られた結果である。この論文では 基台の中心点からの高さが、0mm、12mm、24mmの測定 水平面で得られた結果のみを与えている。図の正方形 の輪郭はほぼ基台の面積に相当している。水平面内で の測定点は、独楽の測定の場合と同じく5mm間隔のメッ シュの格子点とした。各測定面毎に磁束密度の垂直成 分の大きさを測定し、得られた数値(単位G)から、 BASIC言語で書いた等値曲線描写プログラム⁽¹⁾を 用いて等値磁束密度曲線としたものである。図中の数 値がガウス単位での磁束密度の大きさである。

測定1からは基板の中心垂直線上で磁束密度の極値 の存在が確認されている。測定2からは、その極値の 存在領域は中心垂直線の周りにある程度の広がりを持っ て存在していることが明らかとなった。また、図4の (1)、(2)からは、一つの測定平面内において、平 面の中心部の磁束密度の大きさは、その周りの磁束密 度の大きさより小さいことも明らかとなった。すなわ ち、基台による磁界は、周囲の磁界の方が中心部より 大きくなっておりあたがもすり鉢状の磁界の強度分布

図4 基台上空の一定水平面内での磁束密度の垂直成分 の分布。(1)は0mm, (2)は12mm, (3)は24mmの高さ。

-127 -

小山工業高等専門学校研究紀要 No.30

を示しているのである。

図5が、図1と同じ測定方法により測定3で得られ た結果である。なを、この論文には掲載していないが、 市販の平型板磁石についても同様の測定を行った。図 1と同じく、得られた磁束密度ベクトルを矢印で描写 している。図中の下部の長方形が基台の断面に相当し ている。測定精度の限界、及び使用したパソコンのグ ラフィックルーチンの分解能の悪さにより詳細なベク トル分布図となっていないが、図から次のようなこと が分かる。

- 基台に近い領域では、基台からの高さが同じ面 上では磁界の垂直成分の大きさは中心垂直線近傍 で小さく、この軸からずれるに従って次第に大き くなっている。
- 2. 基台に近い領域で、かつ基台の中心垂直線に近 い領域では、磁束密度ベクトルは垂直方向より若 干、中心垂直線軸方向に傾いている。
- 基台から充分に離れた領域では、磁束密度の分 布は一般に市販されている平板磁石のそれとほぼ 一致している。

この測定3で得られた磁束密度ベクトル分布をもと にして、このベクトルの包絡曲線を描かせることがで きれば、その曲線は磁気力線を与え、それに垂直な曲 線群が描写できれば等磁位曲線を得ることになる。が、 残念ながら、実験データから、そのような曲線を描写 できるプログラムを探し出すことができなかった。流 体力学関係では、流体方程式のシュミレーションの結 果を流線や等ポテンシャル曲線で描写できるものがあ るが、実験データから描写するような、そのようなプ ログラムはないのかもしれない。

図6 棒磁石とそれが作る磁位。

図7 基台の円盤磁石板モデルと座標系及び 各種パラメータの取り方。

4. 基台の作る磁束密度及び磁位の数値シュミレーション

一般に、平らで一様に磁化している磁石板の周りの 任意の点Pにおける磁位 Φ は、点Pがその磁石板を 見込む立体角 Ω に比例する形で与えられる。すなわ ち、

$\phi \propto \Omega$ (1)

が、U-CASの基台にはこの式は適用できない。実際において、(1)式はある近似のもとで成り立つからである。磁石板の厚さdが十分に薄く、磁石板と点 Pの距離rが充分に大きい場合、すなわち、

$r \ll d$ (2)

の場合に成り立つ式である。U-CASの場合では、 基台の厚さは1 cm、大きさは12 cm四方、独楽の浮 上点は基台上数cmの所にあるので、(2)式は全く満 足していない。また、たとえ(2)を無視して、(1) 式を適用したとしても、基台の中心垂直線上で、基台 から点Pが離れるにつれて、 Ω すなわち ϕ は単調減 少して行き、 ϕ の微分で得られる磁東密度Bに極値が 得られないことも分かる。そこで、

仮定1 基台には磁気双極子を形成している細い棒 磁石が多数配列している。

と考える。図6に示しているように、磁気双極子の長 さをd、単位面積当たりの磁化の大きさ、すなわち磁 化 面 密 度 を m_- 及び $m_+(m_- = -m_+, |m_-|$ $= |m_+| \equiv m)$ 、磁極の端面の面積を Δs 、双極子の 中心を原点Oとすると、この磁気双極子が点Pに作る 磁位は ϕ

(3)

ならば

 $\Phi = \frac{m \cdot \varDelta s}{4\pi\mu_o} \left(\frac{1}{r_+} - \frac{1}{r_-}\right) \tag{4}$

 $\Delta s \ll r_{-}^2, r_{+}^2$

で決まる。

次の仮定として、

仮定2 基台を円盤磁石板で近似する。

この仮定はシュミレーションの簡単化のために行う ものである。基台の形状は四角形であるが、その磁束 密度の測定結果から、磁束密度の分布は中心垂直線に 関して回転対称であると見なせること。独楽の浮遊現 象は基台の中心垂直線近傍で実現されることから、こ の仮定は悪くはない。図7にモデルとした円盤磁石板 と座標系の取り方を示している。

図7で点線の長方体で示した細い棒磁石の上部磁極 の中心点をR、下部磁極の中心点をS、点Pはx-y平面内にあり座標 (x, y)、点Qの座標は (x, 0)、xz平面内の \angle QORのなす角を α 、 h = QR、 $r_{+} = PR, r_{-} = PS$ とすると

 $h^{2} = (x - r \cos \alpha)^{2} + r^{2} \sin^{2} \alpha$ (5)

$$r_{+}^{2} = y^{2} + h^{2} = y^{2} + x^{2} + r^{2} - 2xr \cos \alpha \qquad (6)$$
$$r_{-}^{2} = (y+d)^{2} + h^{2}$$

 $= (y+d)^2 + x^2 + r^2 - 2xr\cos\alpha$ (7)

となり、1本の棒磁石によって点Pに形成される磁位 ⊿Φは、(4)式から、

$$\Delta \Phi = \frac{m \cdot \Delta s}{4\pi\mu_0} \left(\frac{1}{r_+} - \frac{1}{r_-} \right) \tag{8}$$

よって、円盤磁石全体により点Pに作られる総磁位 Φは

$$\Phi = \Sigma_t \varDelta \Phi \tag{9}$$

で与えられることになる。ここで、 Σ_t は円盤全面での 総和を意味している。棒磁石の磁化面密度mが円盤 全面で同じ値であるとすると、円盤は一様に磁化して いることになり、磁束密度の実験結果と矛盾すること は後述証明する。実験結果からは磁束密度は回転対称 性を持っていることが分かっている。そこで、

仮定3 磁化面密度 m は基板の中心を対称点として、同心円対称の分布をしている。

としてみる。この仮定に基づいて、図8のように円盤 型磁石をn 個の同心リングに細分し、i 番目リング ($i = 1 \sim n$)内では一定の磁化面密度 m_i を持つもの とすると、i 番目のリングによる点Pでの磁位 ϕ_i は、 (8)式の $m \in m_i$ と書き改め、 $\Delta \phi \in \Delta \phi(m_i)$ と表 記して、

$$\Phi_i = \Sigma_i \varDelta \Phi(m_i) \tag{10}$$

ここで、 Σ_i はi番目のリング全面上での総和を意味している。

(10)式を図7で示した座標系で具体的に表記する。i番目のリングの内径を I_i 、外径を O_i 、面積素 $\Delta s = rdrda$ で表記できるので、(10)式は

$$\begin{split} \Phi_i &= \int_{l_i}^{o_i} \int_0^{2\pi} \Delta \Phi(m_i) \\ &= \frac{m_i}{2\pi\mu_0} \cdot \int_{l_i}^{o_i} \int_0^{\pi} r \cdot \left(\frac{1}{A} - \frac{1}{B}\right) dr d\alpha \end{split} \tag{11}$$

$$x^2 + r^2 - 2xr\cos\alpha \equiv C \tag{12}$$

として、

$$A = (y^{2} + x^{2} + r^{2} - 2xr \cos \alpha)^{\frac{1}{2}}$$

= $(y^{2} + C)^{\frac{1}{2}}$ (13)
$$B = \{(y+d)^{2} + x^{2} + r^{2} - 2xr \cos \alpha\}^{\frac{1}{2}}$$

= $\{(y+d)^{2} + C\}^{\frac{1}{2}}$ (14)

(10)、又は(11)式を各リングに適用し、結果を総和すれば、点Pの磁位が求まる。すなわち、円盤全体に分布している棒磁石による点Pでの総磁位のは

$$\Phi = \Sigma \Phi_i \tag{15}$$

ここで、∑は全リングでの総和を意味している。 実験結果から得られた量は、磁束密度である。得ら

図8 円盤の同心リングへの分割。

-129-

れた磁東密度から磁位曲線を描かせることができなかっ た。従って、シュミレーションもまず、磁東密度で行っ てみる必要がある。磁位のスカラー関数 Φ が与えら れれば、磁東密度ベクトルは

 $B = -\text{grad} \phi$ (16) で表記され、点Pにおける磁束密度 $B = (B_x, B_y)$ は

$$B_x = -\frac{\partial \Phi}{\partial x} \tag{17}$$

$$B_y = -\frac{\partial \varphi}{\partial u} \tag{18}$$

で与えられる。その結果は、(8)及び(11)式をも とにして容易に計算でき、

$$\begin{split} B_{x} &= \Sigma \frac{m_{i}}{2\pi\mu_{o}} \cdot \int_{l_{i}}^{o_{i}} \int_{0}^{\pi} r(x - r\cos\alpha) (\frac{1}{A} - \frac{1}{B}) dr d\alpha \end{split} \tag{19} \\ B_{y} &= \Sigma \frac{m_{i}}{2\pi\mu_{o}} \cdot \int_{l_{i}}^{o_{i}} \int_{0}^{\pi} r \Big\{ \frac{y}{A} - \frac{(y + d)}{B} \Big\} dr d\alpha \end{split} \tag{20}$$

(19)、(20)式を、各リングでの磁化面密度 miを主要パラメータとし、円盤のリングへの区分数、 一つのリングにおける動径方向及び偏角方向の区分数 を副次パラメータとして、区分求積法により磁束密度 ベクトル分布図を求めた。その結果を図9、10に示 した。図中の中央下部の長方形が、図5と同じく基台 の断面に対応している。その長方形の中に縦の線分で 各リングに仮定した mi の相対値を描写している。図 9はm_iが全てのリングで等しくしたものである。中 心部付近の磁束密度ベクトルは垂直成分のみであり、 また中心部の磁束密度はその周囲より小さいこともわ かる。図10ではm,は基台の中央付近では小さく、 中心から離れるに従って段々と大きくなり中途で最大 値を取るように配置した場合である。実測で得られた 磁束密度分布図5に最も似たような磁束密度分布のシュ ミレーション結果を与えるときのものである。

図11は、 m_i の何種類かの分布を仮定したときの 基台中心垂直線上での磁束密度の大きさをシュミレー ションで計算して得られた結果をグラフとしたもので ある。実験データの図3と対照することができる。点 線は m_i が一様に分布しているときで、図9の磁束密 度ベクトルを与えるときの結果、一点波線は基台磁石 の中心部付近で $m_i = 0$ としたとき、実線は m_i の分 布が図10の結果が得られたときのものであり、2点 波線はその m_i の分布を少し崩したときに得られた結 果である。

図11と図3、図10と図5の対比の結果より、基 台の磁化の分布は磁気双極子モデルと考えると、それ らは図10中に示した相対強度に近い分布をしている

図10 磁化面密度 mi の分布に変化をもたせたとき。

と推論した。

磁束密度のシュミレーションからもとに戻り、基台 の作る磁位 ϕ を与える(11)及び(15)式を空間 の各点で計算し、得られた磁位値を等値曲線描写プロ グラム⁽¹⁾で取り込んで、磁位の差が等間隔の等磁位曲 線分布も求めた。図12、13がその結果である。図 中の磁位の数値は相対値である。図13は、磁位の分 布を見やすくするために、図12を基台の中心垂直線 方向に拡大強調したものである。図中で基台の中心垂 直線と等磁位曲線との交点に記号を付している。図か らだけでは明瞭に判断できないが、これらの交点間の 間隔には、P₁P₂〉P₂P₃〉P₃P₄≒ P₄P₅≒ P₅P₆〈P₆ P₇〈P₇P₈〈P₈P₉の大小関係が数値的にも得られた。 つまり、P₃からP₆の間で磁位の勾配が急であり、磁 束密度は磁位の座標微分で与えられるので、この近傍 で磁束密度が極値を持つこととなる。これは実験結果

図11 シュミレーションによる基台磁石の中心垂直線 上での、磁束密度の垂直成分の高さ依存。

と良く一致しており、また磁束密度のシュミレーショ ンの結果とも一致している。

P₁からP₆の交点にかけて、中心垂直線近傍では等 磁位曲線は下に凹である。このすり鉢状になった磁位 曲線の構造が、独楽が中心垂直線からずれた場合に、 独楽を中心線上に戻す磁気力を生じさせているものと 思われる。この磁位曲線の凹特性は、実験で得られた 磁束密度ベクトルが基台の中心垂直線の近傍下部で中 心線側を向いている(図5)こと、また磁束密度のシュ ミレーションの結果(図10)、と完全に一致してい る。

5. U-CASの独楽の空中浮遊の原理

今までに記述した実験の結果と磁場のシュミレーショ ンの結果に基づいて、U-CASの独楽の安定浮遊の 原理を解明する。その解析の基礎になるのは、やはり 通常の独楽である。U-CASの独楽の現象は「独楽 は中空に浮かび、自転している限り基台の中心垂直線 近傍から逃げることがなく、ファファと浮かび、才差 運動をしながらも空中浮遊を持続する。」と言えるの で、解明は以下の3通りに分けて行うのが分かり易い であろう。

- (1)まづ、中空に浮かぶ理由。即ち、独楽に作用す る重力と基台から受ける磁気反発力の釣合が基台 上空数cmの所で実現される理由。
- (2)中空に浮かんでいる独楽が、中心垂直線近傍から逃げ出さない理由。
- (3)自転していれば、回転軸が傾いても才差運動をして空中浮遊を持続し、自転していなければ、空中浮遊が全く実現できない理由。

最初に(1)について解明する。図14に、水平な 床の上で回転している通常の独楽を図解している。独 楽には重心Gに重力Wが鉛直下向きに作用し、床と回 転軸との接点である作用点Sで床から鉛直上向きに抗 力Fを受けている。このような状態、すなわち独楽が 床にめり込まず、また上に飛び去らないということは、 独楽に作用している鉛直方向の力WとFが釣り合って いるからである。すなわち、抗力Fは重力Wに対する 浮力と見なすことができる。

U-CASの独楽の場合には、重心と磁気反発力に よる浮力の作用点が近接しているとみなせる。したがっ て、ヤジロベー型の独楽の方が、U-CASの独楽と うまく対照できる。U-CASの独楽が中空に浮かん

図12 磁位シュミレーションの結果。*m*_iの分布は図10 と同じとしたとき。

図13 磁位シュミレーションの結果。図12を垂直方向 に拡大したもの。

でいられる一つの条件は、この独楽にも前2者の独楽 と同様に、重力Wと磁気反発による浮力Mが作用し、 これらの2力が釣り合っているからであると断ずるこ とができる。

基台の中心垂直線上の磁束密度強度分布(図3)と シュミレーションによる結果(図11)から、磁束密 度の最大値は基台上空数cmの所にあるので独楽の重力 Wと磁気浮力Mの釣合は、その近傍で実現されること になる。空中浮遊を実現させるためには、U-CAS の独楽の重力調整が微妙であるのは、磁束密度の最大 値を取るところの曲線の曲率が小さいからであり、独 楽が軽ければ基台上空にはじかれ、重すぎると浮き上 がらない。これは、実験とも良く合致する。

次に(2)について解明する。(1)の条件が満た されたとしても、この(2)の条件も満たされなけれ ば、独楽の水平方向の安定性は全く保証されないので、 独楽は安定して中空に浮遊し続けることはできないの は明らかであろう。通常独楽とヤジロベー独楽が1点 で回転し続けるのは、S点での床と軸の間の摩擦力に

U-CASの独楽

ャジロベー型独楽 図14 独 楽 の 釣 合。

よる。この摩擦力が小さかったり、ゼロであるような 場合には独楽は自転しながら水平方向に動き回る。U-CASの独楽は中空にあるので、そのような摩擦力が 存在する余地は全くない。磁束密度ベクトルの測定結 果(図5)及びシュミレーション結果(図10)と磁 位のシュミレーション結果(図10)と磁 位のシュミレーション結果(図13)から、中心垂直 線よりずれるに従って基台の作る磁束密度の大きさは 漸次に大きくなっており、かつその向きは若干中心垂 直線方向に傾いていることがわかる。すなわち、U-CASの独楽が、中心垂直線近傍からずれたときには、 中心に戻らせる磁気反発による復元力が作用するよう になっているのである。これは滑らかなすり鉢の底で、 通常の独楽を回したとき、独楽は最低部に指向する傾 向と同等とみなせる。

(3)について解明する。ヤジロベー型独楽では、 もし重心Gが支点Sより下にあれば、この独楽は回転 していなくても安定状態を取り得る。では、U-CA Sの独楽でも、重心が浮力の作用点Sより下にあった ならば、自転していなくても安定浮遊するのであろう か? 否である。ヤジロベー型の浮力(すなわち抗力) は、例えば熱気球の空気の浮力と同等のものであるが、 U-CASの磁気反発力による浮力は、これらとは本 質的に異なった特徴、すなわちトルクを伴った特徴を 持っているからである。

図15にU-CASの独楽の受ける磁気反発力(= 浮力)を図解した。基台の上面をN極、独楽の下側を N極、上側をS極とすれば、独楽の受ける磁気浮力は、 基台のN極-独楽のN極の間に作用する斥力の方が、 基台のN極-独楽のS極の間に作用する引力より大き いからであることで説明できる。ところで、これらの 2力の作用点は必ずしも一致しておらず、かつ常に一 直線上にあることは極めてあり得ないのは明らかであ る。それは、独楽の磁化の仕方や形状、及び基台の磁 界の作用の仕方により、自在に変化すると考えられる からである。つまり、これら2力は合力として上向き (厳密に常に鉛直方向である必要はない)の磁気浮力

図15独楽のトルク。

を作り出すが、同時に、独楽に作用している重力Wも 含めた3力により、独楽を転倒させようとするトルク も作り出していることがわかる。

通常独楽でもトルクが作用しているのは、図15を 見れば理解できよう。重力Wと抗力Fはまさに偶力の 関係にあり、独楽を転倒させようとするトルクを作り 出している。このトルク作用に対して、独楽が自転を しているならば、その角運動量の保存により、独楽は 回転軸を才差運動することにより転倒を押さえ、自立 回転運動をし続けるわけである。

同様なことが、U-CASの独楽の場合において実 現されていると考えられる。すなわち磁気斥力、磁気 引力、そして重力の3力によるトルクで独楽が転倒し ようとするのを、独楽の自転による角運動量の保存で、 独楽が才差運動することで回避しているのである。も し、独楽が自転していなければ、独楽を転倒させよう とするトルクに対する作用が全くないので、独楽は転 倒し、空中浮遊は全く実現されることはない。

重心が抗力の作用点より低いヤジロベー型独楽のよ うに、U-CASの独楽の重心もより十分に低くする ことは容易にできる。そして、重心が幾ら低くても、 斥力、引力、重力の3力の合力はゼロとすることはで きる。が、これら3力のトルクを消すことはできない。 自転していなければ、独楽に作用している合力がゼロ で、摩擦力や束縛力もない故に、トルクが独楽を転倒 させようとすることを妨げる何らの作用もない。その

-132-

作用は独楽の自転以外にはないわけである。

本研究を行っている時点で、論文検索を行ったら、 U-CASのような極めて簡単なシステムにおける磁 気浮上に関する論文は1件のみであった。その論文は U-CASを取り扱い、特に実験的な測定はなく、独 楽の空中浮遊を、独楽に内蔵されているらしい金属泊 に流れる渦電流で説明を試みていた⁽²⁾。が、本論文で は、磁気浮上の原理の解明に、渦電流は全く関係がな く説明できることを明らかにした。

7.終わりに

U-CASのキットに付属している独楽ではなく、 独自に独楽を製作し、その浮遊実験も行った。市販さ れている通常のフェライト製のリング型磁石、及び穴 のない円盤型磁石を用いた。軸及びバランサには非金 属製の木、竹、プラスッチックを用いた。ともに空中 に安定して浮遊させることができた。U-CASの磁 気浮上には金属による渦電流は無関係であることがわ かった。

U-CASの独楽の空中浮遊する高さは基台から約 1cm~2cmのあたりである。多分、同様の磁気浮上現 象を利用したものであると思われるが、浮上の高さが 6cm~7cmぐらいと思われる「レビトロン」と称する ものが公開されたそうである⁽³⁾。U-CASの基台の 磁位分布を拡大する、即ち基台を大型化するならば、 容易に同程度の浮上の高さを実現できるものと思われ る。或いは、シュミレーションの結果(図11)から すると、磁束密度の極値の存在する高さは基台の磁化 分布に依存しており、その分布を変更することでも実 現できるように思われる。

独楽をより高いところで空中浮遊させること、より 長時間空中浮遊させること、U-CAS以外での空中 浮遊の実現等については今後の課題としていきたい。

参考文献

- (1)金野茂男;「N88-BASIC言語で書かれた等値曲線描写プログラム」(未公表)
- (2)村上 力;第8回「電磁力関連のダイナミックス」シンポジウム講演論文集、1996年5月、 p461~p466。
- (3) ИЗВЕСТИЯ (ロシア共和国の新聞)、1996年1月13日号

(受理年月日 1997年 9 月29日)