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ON STRONGLY DIVISORIAL IDEALS OF SEMIGROUPS

Akira OKABE

1. INTRODUCTION

Let S be a commutative additive semigroup with identity, that is, a monoid. The iedntity
of a monoid S is denoted by symbol O. A monoid S is said to be cancellative, if a+b =
a+c with a,b,c in S means b =c and S is said to be torsion-free if ns = nt implies s = ¢
for all s,zin S and all positive integers 7. In this paper we shall call a torsion-free cancellative
monoid a g-monoid.

Let S be a g-monoid. Let ~ be the equivalence relation on SXS defined by (s, ¢t )~
(s,,t,) if s,+t, = s,+t, and let s—t be the equivalence class of (s,?) under ~. Let
G = {s—tl|s,t €S} be the set of equivalence classes . Then G 1is evidently a commutative
group and S is a submonoid of G.G is called the quotient group of S and is often denoted
by q(S) . Each semigroup T lying between S and ¢(S) is called an oversemigroup of S.
Every oversemigroup 7 of a g-monoid S is evidently a g-monoid.

A non-empty subset I of a g-monoid S 1is called an ideal of S if S+IE& 1 . An ideal [

is properly contained in S , then I is called a proper ideal of S. A proper ideal P of S
is called a prime ideal of S if z+y&E P for z,y in S implies TEP or yEP. An
ideal I of S 1is said to be finitely generated if I can be expressible as I =S+ a, U S+
a, U...U S+a, for a finite number of elements a,, a,, ..., a, of S.
In particular, if /= S+a for some element a € S, then I is called a principal ideal of S .
In this paper, we shall denote the set of proper ideals of S by I(S). An element zE€ S is
called a unit of S if z+y =0 for some YyE S. Let U(S) be the set of units of S. If
M = S\U(S) is a non-empty subset of S, then M is the largest ideal of S and is called
the maximal ideal of S.

Let S be a g-monoid with quotient group G . A nonempty subset I of G 1is called a
fractional ideal of S if S+IS 1 and s+IES S for some s& S. In this paper the set of
fractional ideals of S is denoted by F(S). For any IE€ F(S), we set [S:I] = {rEG|z+
IS S}. Then [S:I] is also a fractional ideal of S , since s+[S:I] €S for any s€IN S.
[S:1]is called the dual of I. The dual of I € F(S) is also denoted by /™' . A fractional ideal
I of S is said to be divisorial if I =1, where I, =[S:I17'7=({"")"". Let D(S) denote the
set of divisorial fractional ideals of S. For any I€ F(S), [[:Il]={zE€ G|lz+IE I} is an

oversemigroup of S and is called a conductor oversemigroup of S .
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In Section 2, we study strongly divisorial ideals of a g-monoid. In Theorem 7 and Proposition
9, we give .two necessary and sufficient conditions of a fractional ideal to be strongly
divisorial. In Section 3, we study the complete integral closure of a g-monoid. In Proposition
14, we give a representation of the complete integral closure of a g-monoid S with the aid
of strongly divisorial ideals of S.

Throughout this paper, S will be a g-monoid and G will denote its quotient group.

Unexplained terminology and unreferenced facts about semigroups may be found in [2].
2. STRONGLY DIVISORIAL IDEALS

A fractional ideals I of S is said to be strong if I+I =1 , thatis, I"'=[I:1].1f I
is a strong fractional ideal, then TS S and so I is an ideal of S. If I is an ideal of S,
then ICI+I'CS If I+I7'=S holds, then I is called an invertible ideal of S. If M is
the maximal ideal of S , then M is either strong or invertible. Note that if 7 “'=S, then
I+I7'=S holds and so I is evidently invertible.

LEMMA 1. Let I be a fractional ideal of S. Then I is a strong ideal if and only if I=
J+J ' for some ideal J of S.

PROOF. If I is strong, then I=1I+I"". Conversely , assume that I=J+J ' for some
ideal ' J of S. Then I'=1[S:J+J D]1=I[[S:J1:J1=0%J']. Hence I+I'=
J+I D+ 7 =7+ 4+ U ) =J+] ' =1 as wanted.

REMARK 2. If F is a fractional ideal of S, then F+F ™' is a strong ideal. In fact ,
since sS+FE S for some sE S, if we set /= s+F, then J is an ideal of S and F+F!
= (s+F)+(=s+F ) = (s+F)+(s+F)'=J+J7'. Hence F+F '=J+J ' is strong by

Lemma 1.

REMARK 3. If I is an invertible ideal of S, then I~' is not in general a subsemigroup
of G. To see this, let /= (a¢) with a nonunit a in S. Then clearly —a €17' but —2a is
not in I™'. For, if —2a €117, then —a= —2a+a €1 '+I=S and so a is a unit of S

which contradicts the assumption.

LEMMA 4. Let I be an ideal of S. Then the following statements are equivalent.
(1) I™" is a subsemigroup of G .

2) I''=[1,: 1] .

(8) IT'=[U+I™D: U+1™D].

PROOF. (3)= (1). This is clear.

(1)= (2). Since I™! is an oversemigroup of S , I, =1[S:I7'] is an ideal of /™' and so
we have I 'C [[:1]. But [I:I]1 S (I)"'=1"" also holds and hence I'=[I,: L].

(2)= (8). Since (I+I™)7'=T[U+I""):(U+I""] by Lemma 1, it suffices to show that
I7'= (J+I™7'. Clearly (J+I™)™' S I7'. Conversely, let uE1 'and a+bEI+I"" where
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a€] and bEI'. Then u+a+b=a+u+db) EI+I"" and so uweE [J+I):I+ID] .
Hence I '= (J+I™")' as required.

PROPOSITION 5. If I is an ideal of S , then I™' is an oversemigroup of S if and
only if I, is strong.

PROOF. This follows from Lemma 4, since I ' = (I,)7".
PROPOSITION 6. If I is a strong ideal of S, then I, is also a strong ideal.

PROOF. Since I is strong, I "= [I:I] is an oversemigroup of S. Then, by Lemma 4,
I"'=1[I:1] and therefore (I,)"'=1"'=[I,:1], which implies that I, is also strong.

As in [1], we call an ideal I of S strongly divisorial if I is strong and divisorial. If I,
is strong, then it is clear that I, is strongly divisorial. Let D (S) denote the set of strongly

divisorial ideals of S.

THEOREM 7. Let I be a fractional ideal of S. Then I is strongly divisorial if and only
if 1= +J™"), for some ideal ] of S.

PROOF. ( If ). Let J be an ideal of S. Then, by Lemma 1, J+J7' is strong and then
I=(J+J7 "), is strongly divisorial by Proposition 6.

( Only if ). Suppose that I is a strongly divisorial ideal of S . First, by Lemma 1, I=
J+J 7' for some ideal / of S and then , by hypothesis, I=1,= (J+J71),.

REMARK 8. (1) Let F be a fractional ideal of S and let s be an element of S such
that s+FCS. If we set J=s+F, then , by Proposition 7, (F+F7'),={J+J7"), is
strongly divisorial.

(2) Since S™'=S, we have S,=(S")7'=S and S+S'=S+S=S. Hence S is always

strongly divisorial.

Let T be an oversemigroup of S. If we set [S: 7] = {x € Glz+TE S}, then [S:T] is

the maximum ideal of S that is still an ideal of T and ia called the conductor of S in T.

PROPOSITION 9. Let I be a fractional ideal of S. Then I is strongly divisorial if and

only if I is the conductor of S in some oversemigroup T of S.

PROOF. If I is strongly divisorial, then I™' is an oversemigroup of S and [S:I7}]=
I, = 1. Thus I is the conductor of S in I7'. Conversely let 1= [S: T] for some oversemigroup

T of S. Then [I:11=1[S:T):I=[S:(J+T)] =1[S:11=1" and so I is strong. Moreover,
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I=1[S:T] =[S:[S:[S: T1]] =1, and hence I is divisorial.

COROLLARY 10. There is a one-to-one correspondence between the set X of oversemigrops
of the form I™' with integral ideals I of S and the set Y of strongly divisorial ideals ]
of S.

PROOF. Let a:X—Y be a map such that a(J™") =[S:I7']1 =1, for each I"'E X .
Then it follows from Proposotion 9 that a is well-defined and surjective, since if I '€ X,
then (I)™'=1"'=[I:L] and so I, is strongly divisorial. Moreover, if a((7;)™") =a((L)™
with (J)",(L)'E X, then 7' = (1)) ' = ((I,))"' =1 " and therefore a is injective.

PROPOSITION 11. For each I € D,(S), we set R =1"". Then the map o: D(R) — D(S)
such that o(H) = (H+1), for any HE D(R), is an injective map and we have o(D,(R))
cDJ(S).

PROOF. Clearly H+I is an ideal of S for each HE D(R), and so (H+I),E€ D(S) .
Suppose now that o(H,) = o(H,) with H,H,E D(S) . Then we have o(H)):I = o(H,):I.
But o(H):I= (S:(S:(H,+D)):I=(S:D:(S:(H,+D) =(S:D:((S: D:H) =R:(R:H)=H,,
because H € D(R) . Likewise we have o(H,):I = H, and so we have H, = o(H,):I = o(H,)
: I =H, and hence 0 is injective.

To prove o(H) € D,(S) for each H € D,(S), it suffices to show that (J+H)+{U+H)™"
=J+H. Now it follows that (J+H)+{U+H)'= (U+H)+S:(I+H) = U+H) +((S: D : H)
=]+H+(R:H) =I+(H+(R: H)) =I+H, because H is strongly divisorial in R .

EXAMPLE 12. Put S=1{0,2,3,4,5, -} =Z,— {1}, where Z, is the set of non-negative
integers. Then S is a g-monoid and the quotient group of S 1is equal to Z, the set of
integters. If we set 1= {4,6,7,8, -}, then I is an ideal of S. It is easy to see that I~'
=1{0,2,3,4,-} =S and then I,=S. Hence I is not divisorial. Next we set J= {3, 4,
5,6,7, ). Then I is an ideal of S and J'=1{-1,0,1,2,3,:}. Then J,=1{3,4,5,86,
-} and so J=], is divisorial. But J+/ '={2,3,4,5, -} # ] and therefore J is not

strong.
3. THE COMPLETE INTEGRAL CLOSURE

An element z of G is said to be almost integral over S if a+nx &S for some a E S
and all positive integers 7z . The set of elements of G that are almost integral over S is
an oversemigroup of S and is called the complete integral closure of S. Here we denote the

complete integral closure of S by S'. S is said to be completely integrally closed if S = S".
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PROPOSITION 13. For any g-monoid S , we have S" = U{F:F|F € F(S)}.

PROOF. (2). Let € F:F for any F& F(S). By definition, s+F &S for some
sES. If weset J=s+F, then J is an ideal of S. Then for any d € J, we have z+d &
z+JS JC S and then 2z+d =z+(zx+d) Ex+J S JC S. Continuation of this process leads
us to obtain that nz+d € S for all positive integers n and hence z € S".

(S). If zE€S’, then d+nrES for some dE S and for all n=1. Set /= U{(d)
+nzln=1}. Then J is an ideal of S and z+/E J. Hence € J:JS S*. This completes

the proof.
PROPOSITION 14. For each g-monoid S, we have S = U{I"'|I€ D,(S)}.

PROOF. For each IE€ D,(S), we have I"'=1:1 and so the inclusion 2 is clear.

To prove the reverse inclusion, let £ & S . Then zE F:F for some F &€ F(S) by
Proposition 13. By Proposition 9, we have I=S:[F:F]E€ D(S). Then z € [F:F]
C [S:[S:[F:F]1] =1"" with 1€ D,(S) and so our proof is complete.

COROLLARY 15. S is completely integrally closed if and only if S 1is the unique
strongly divisorial ideal of S.

PROOF. By Proposition 14, S=S" if and only if I"'=S for each I&€ D,(S). But if
I'=S,then I=1,={U"")"'=S"=S and therefore S =S if and only if D,(S) = {S}.

LEMMA 16. Let I and ] be two strongly divisorial ideals of S . Then there exists a
strongly divisorial ideal H of S such that HES IN].

PROOF. Take H= ((UI+))+{U+])""),. Then H is a strongly divisorial ideal of S by
Theorem 7. Now we have [S:I]=[I:11CS [U+])D:UI+D]CIIS:T+D]:[S:UT+D]]=
[S:(I+D+UT+D DI =[S:(U+D+U+)D™D,]) =S:H and hence I =1, 2 H,= H. Similarly
(S:/1=0: NC[U+)D):U+)D]ES:H andso J=J,2H,=H. Thus HE 1N ] as wanted.
This completes the proof.

If I and J are strongly divisorial ideals of S, then we denote by (/- J) the strongly
divisorial ideal H = [(I+]):(I+])™'], defined in Lemma 16 .

PROPOSITION 17. The following conditions are equivalent:
(1) There exists a minimum strongly divisorial ideal of S.
(2) S'=1"" for some strongly divosorial ideal I of S.

(3) [S:S"] is not empty.
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PROOF. (1)= (2). Let I be a minimum element of D,(S). Then we have S°=1"' by
Proposition 13.

(2)= (3). If S'=1I"" for some strongly divisorial ideal I of S, then [S:S"] = [S:I']
=1,=1 is not empty.

(3)= (1). Let I=1[S:S"]. Then , by Proposition 9 , I is a strongly divisorial ideal of
S. Now let J be an arbitrary strongly divisorial ideal of S. By Proposition 13, J ey
and so I=[S:S 1€ ((J)™D'=J,=7. Thus I is a minimum element of D, (S).
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