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Abstract

In this paper, as a generalization of admissible GCD defined by Data and

Hautus, the notion of admissible bases for transfer matrices of linear systems defined
over unique factorization domains is introduced. Using this notion, a necessary and
sufficient condition for the realizability of precompensators by static state feedbacks

15 presented.

Key words
Unique Factorization Domains

1. Introduction

Linear systems defined over rings have been
extensively studied in the last three decades
(see e.g., [1](3][8][10][11][12] and the references
therein). Linear systems over rings are a natu-
ral generalization of those over the real num-
ber field. For instance, linear systems over
rings can be used for modeling systems char-
acterized by parameters, systems described by
time-delay differential equations, systems in-
volving integration operators, and many oth-
ers.

In this paper, we introduce a notion of ad-
missible bases for transfer matrices of linear
systems defined over unique factorization do-
mains and, using this concept, study the prob-
lem of realizing precompensators by static
state feedbacks.

The structure of this paper is as follows.
Section 2 presents preliminaries, including
some basic dehmtions, and important prop-

erties of commutative rings and of linear sys-
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tems over rings. Section 3 gives the definition
of admissible bases for matrices of linear sys-
tems, and presents a necessary and sufficient
condition for the realizability of precompen-
sators by static state feedbacks. Finally, in

Section 4 some concluding remarks are given.

2. Preliminaries

In this section, basic definitions and im-
portant properties of commutative rings with
identity will be summarized for the sake of
easy readability. Further, linear systems de-
fined over commutative rings will be briefly

reviewed In terms of mathematical terminolo-

gles.

2.1 Mathematical Preliminaries
Throughout this study, R will denote the
field of real numbers and R a commutative
ring with identity 1. R is called a domain if
for a, b € R, a # 0 and b # 0 imply that

ab # 0, that is, there is no nonzero niifac-
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tor in R. An element a € R is called a unit
or an tnvertible element if there 1S a unique
b € R such that ab = 1. Then, the element
b is called the inverse of a and is written as
b =a"!. A nonzero element p € R is called
irreducible if it is not a unit and if p = ab for
some a, b € R implies that either a or b is a
unit.
(2.1) Definition

A ring R is called a unique factorization
domain(UFD) if it is a domain and if the fol-

lowing conditions are satisfied:

(i) Every a(# 0) € R has a factorization of

the form a = py - - - p where py,-- -, pr are

irreducible elements in K.

(ii) f a = p1--"pr = q1++-qs are two such
factorizations, then one has r = s and
by suitably permutating the indices p; =

€191, ***, Pr = &g, for some units ¢; in

®K. O

A well-known example of unique factor-
ization domains is the ring U[zy, -+, x4 of
all polynomials of indeterminates x1,---,Zq
with coefficients in a UFD U.

ular, R[z1,---,Z4] is a UFD, and this fact

In partic-

is very suitable for studying linear systems
over a UFD because systems characterized
by parameters, systems described by time-
delay differential equations and many others
can be suitably described by systems over
Rz, -+, x4 with g > 1.
(2.2) Definition

A ring R is called a principal ideal do-
main(PID) if it is a domain and if for any
ideal A C R there exists an element a € R

such that A coincides with the ideal generated

by a. O
It is well known that a field is a PID and
a PID is a UFD. The ring Z of all integers

is an example of PID’s, and the ring R[z] of

polynomials of a single indeterminate = over
R is also a PID, but the ring R[z1,---,Z]
with g > 2 is not.
(2.3) Definition

Let R be a commutative ring with identity
1 and M an additive abelian group. Then M
is called an R-module if a mapping R X M >
(a, ) — az € M, called scalar multiplica-
tion, is defined, which satisfies for all a, b € K
and z, y € M

(i) associative law: (ab)z = a(bx),

(ii) distributive law: (a 4+ b)z = az +
bz, a(z +y) = az + ay, and
(iii) unitary law: lz=z. O

An element in an R-module is often called a
vector. A subset N of an R-module M is said
to be a submodule of M if for any z, y € N
a,ndanyaeR,:B—I—yENandaxeN.
A set {z,,---,zx} of nonzero elements of M

is called R-linearly independent or simply lin-

k
early independent if Za,,;xi =0, a; € R, 1m-
i=1

pliesa; = -+ =a; =0.
(2.4) Definition

Let M be an R-module. Then M is called
a free module if there is a subset {uy,- -, Urf
of M such that {uj,---,ur} is linearly inde-
pendent and generates the whole M. In this
case, {uy, -, ur} is called a basis of M and 7
the rank of M. C

(2.5) Examples
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(i) R is a free R-module of rank 1 with a
basis {1}.

(if) The set R™ := {[a; - an]* | a; € R}
of all n-tuple column vectors with entries
in R is an R-free module of rank n with
a basis {10 --- 0]*,--+, [0 --- 0 1]T}

where T' denotes the transpose of matri-

ces. L

(2.6) Definition
Let M and M’ be R-modules.
f: M — M’ is called an R-homomorphism

A map

ifforany z, ye Mandanya € R

fle+y) = f(2)+ fly), flaz)=af(z). O

Let M and M’ be free R-modules of rank
n and m, respectively, and {u;}, {v;} be their
bases, respectively. Then any homomorphism
f: M — M’ can be uniquely represented
as an m X n matrix A = (a;;) over R, written

A € R™*™ where a;; are uniquely determined
by

(2.7) flui) = Zaij?)j, ai; € K.
J

Conversely, any matrix A = (a;;) € R™*"
over R defines a unique R-homomorphism
f: M — M’ through (2.7).
(2.8) Remark

It is well-known that if R is a UFD then
for any {&;1,--+,&;} C R there always exists

a greatest common divisor (GCD) over R of

&11”':&1' =

2.2 Linear Systems over Rings
Let R be a commutative ring with iden-

tity 1, R[z| denote the ring of polynomials of

z with coefficients in R, and R(z) the ring
of rational functions over R. The set R(z)™
of all m-tuple column vectors with entries in
R(z) is considered to be an R(z)-linear space.
A rational function f(z) € R(z) is called
proper or causal if it can be represented as
f(z) = p(2)/a(z) where p(2), q(z) € R[4
such that ¢(z) is a monic polynomial and deg
p(z) <deg q(z). Let the set of all proper ra-
tional functions in R(z) be denoted by P(R)
or simply by P if no confusion seems possible.

A matrix L(z) € P™*™ is called biproper or

bicausal over P if L(2)~1 € pmxm
Let AGRnxn,BGRnxm, C € R rxn
and D € R ™™, Then, by a system ¥ =

(A, B, C, D) over R, one means either one

of the following systems:

(i) a continuous-time linear system of the

form

Az(t) + Bu(t)
Cz(t) + Du(t),

bl
"
< &
~ 8B
‘h—ﬂ"i
||

(ii) a discrete-time linear system of the form

E:{:c(t—l—l) =

y(t) =

Az(t) + Bul(t)
Cz(t) + Du(t),

where u(f) € R™, z(t) € R™ and y(t) € R"
are the input, the state and the output of
the system, respectively. Obviously, when
a continuous-time linear system of the form
(1) 1s considered, it is assumed that the time
derivative dz(t)/dt is defined in a suitable
way.

The r X m matrix H(z) given by

(2.9) H(z)=C(zI-A)"*B+D



Kazumichi ARAT

1s called the transfer matriz of ¥. Clearly,
H(z) is a matrix such that its all entries are
proper rational functions of z, i.e., H(z) is a

matrix belonging to P™*™,
Conversely, for any given matrix H(z) €

Prxm_ does there exist a system X =
(A,B,C,D) over R, where A € R"™"™ B ¢
RY™™M C € R™™, D € R™™_ such that
H(z) = C(zI — A)™'B+ D ? Such a sys-
tem ¥ = (A, B,C,D), if it exists, is called
a realization over R of H(z), and any matrix
H(z) € P™*™ which has a realization is called
a transfer mairiz and is refered to simply as
a system over K. 'The rank n of the state
module R" for a realization is called the di-
mension of the realization. A realization with
a minimal dimension is called a minimal real-
1zation.

A system ¥ = (A, B, C, D) over R
1s called reachable if the R-homomorphism
M, : R — 7R" defined by M, =
(B AB
called observable if the R-homomorphism
M, : R — R™ defined by M, =
[CT ATCT ... An=1'CT|T isinjective. Then,
a realization ¥ = (A, B,C, D) of a transfer

matrix H(z) € P"™™™ is called canonical if

A™"1B] is surjective, and is

1s reachable and observable.

It is well-known that if R is a field then
any H(z) € P™*™ has a minimal realization
. = (A, B, C, D), and further that a real-
ization is minimal if and only if it is canoni-
cal. However, for realizations over a general
ring R this statement does not hold true. For
instance, even if R is a PID a minimal real-

ization is not necessarily canonical.

2.3 Examples of Linear Systems over
Rings

(1) Systems with Integer Coefficients. A

system of the form

{ z(t + 1) Az(t) + Bu(t)
y(t) = Cz(t) + Du(t),

|

where A, B, C, D are matrices over Z, is a

system over R =Z.

(2) Parametrized Systems. Let \ :=
(Ala }\21
A; €ER. Then a system of the form

:
{ Za(t) =
y(t) =

-++, Aa) be real parameters, where

A(A)z(t) + B(A)u(t)
C(A)z(t) + D(A1)u(t)

is a system over R =R []].

(3) Delay Systems. Let o := (01, 02, -+,0p)
be delay operators, where (o;f)(t) := f(t —
73) (17> 0). Then a system of the form

{ %x(t) = A0)z(t) + B(o)u(t)
y(t) = C(o)z(t) + D(o)u(t)

is a system over R =R|[o].

(4) Systems with Integration Operators.
Let p := (uy, po,: -+, ) be integration oper-
ators, where (u;f)(t) := ff_ﬁ, f(uw)du (13> 0).
Then the system of the form

d
{ a;ﬂ?(t)
y(t)

A(p)z(t) + B(p)u(t)
C(p)x(t) + D(p)u(t)

is a system over R =R (u].

(5) More General Systems. Define a set
w = (w1, "+, we) of operators by

(wif)(t) = linear functional of {f(7) : 7 < ¢}
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Then a system of the form

d
{ 0
y(t)

1

AN, w)z(t) + B(A, w)u(t)
C(A, w)z(t) + D(A, w)u(t)

I

is a system over R =R[A, w).

3. Admissible Bases of Transfer Ma-
trices and State Feedback Realiza-
tion of Precompensators

Throughout this section, the underlying
commutative ring with identity is assumed
to be a unique factorization domain(UFD),
denoted by /. 'The main reason this as-
sumption is made is twofold. First, this as-
sumption ensures that any matrix H(z) over
P = P(U) has a realization . = (4, B, C, D)
over U [1][11] so that every proper rational
matrix can be considered as a transfer ma-
trix. Secondly, the class of systems over
UFD’s seems to be reasonably large enough
to cover systems appearing in applications.
For instance, linear systems polynomially de-
pendent on parameters, linear systems de-
scribed by time-delay difterential equations,
linear systems involving integration operators
and many others including those character-
ized by their combinations can be described as
linear systems over UFD’s R[zy,-:-,T,] with
g > 1. In addition, there is a more technical
reason that, as mentioned in Remark (2.8), for
any set {£1,---,&,} C U there always exists a
GCD of &, --,&; in U. This property plays
an important role in the factorization theory
for transfer matrices of systems over UFD's.

For notational simplicity, the indetermi-

nate z, such as in H(z), will be often omitted

when no confusion seems to be possible.
(3.1) Definition
A subset D of U|z] is said to be a denomina-

tor set if the following conditions are satisfied:

(1) D is multiplicative, i.e., 1 € D and if
p, ¢ € D then pg € D.
(ii) Each polynomial p € D is monic(therefore
0¢ D).
(iii) D is saturated, i.e., if p € D and g is monic

and divides p then g € D.

(iv) There exists at least one element a € U

such that z —a € D. C

Clearly, the set of all monic polynomials
with {1} is a denominator set. The denom-
inator set plays a very important role in ex-
amination of the stability of systems. In this
section we denote the set of all proper ratio-
nal functions having a representation of p/q,
where p and g are polynomials and g € D for
a denominator set D, by P. It is well known
that, once the ring I/ and the denominator set
D have been chosen, P is a UFD|3].

(3.2) Definition

Let H € P™™ be a transfer matrix, and
L(H) denote the module generated by the
If L(H) is free with rank
m, then a matrix £ = e}, - ,em|, € €
L(H), is said to be a admissible basis of H
if {e1,---,en} is a basis of L(H) and, there
exist polynomial matrices P € U[z|"*" and
Q € U[z]"*" such that

columns of H.

(i) PFE is a polynomial matrix.

(ii) there exists a polynomial matrix K €
U[2]¥*™ such that QH = PEK.
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(iii) P and @ are coprime, i.e., A= PB=QC
implies A = PQD for some D. O

The admissible basis of a transfer matrix
defined above can be constructed as follows.

Let g be a lest common denominator of
the elements of H and Q := qI, where I de-
notes the identity matrix. Define P = QH
and let V = [v1,--,um] € U[z]"*™, where
{vi,-,um} is a basis of L(QH). Then,

there exists a polynomial matrix K such that

P=VK. Chose a € Y suchthat z—a € D

and let i denote the maximum degree of ele-

ments of V. Then,

e 1

— (z—-a,)ﬂa .V

1S an admissible basis of H, where P can be
taken as P = (z — a)*I.

‘1o apply this notion to the problem of re-
alizing a precompensator by a state feedback,
first, for system ¥ = (A, B, C, D) over a UFD
U, consider a compensator (F(z), G(z)) of the

form

(3.3) u= F(z)x + G(2)v,

where F(z) and G(z) are dynamical systems
with dimensions such that the formula (3.3)
1s well defined, and v is a new input. Then, it
easily follows that the transfer matrix Hr g(2)
of the resulting closed loop system 2pg¢g 18

given by

(3.4) Hrpg(z) = H(z)Lrg(z) € P77,

where
(3.5)
Lrg(z) =1 - F(Z)Hs(Z))_lG(z) c pmxm

and the matrix Hg(2), called the input/state

transfer matriz, is defined to be

(36) Hs(z) = (z[ — A)_lB c Ppnxm

(3.7) Definition
A compensator (F(z), G(z)) is called

(i) regular, if G(z) is bicausal over P;

(ii) a precompensator, if F(z) = 0:;

)

(iii) pure dynamic feedback, if G is static, i.e.,

(- is a constant matrix over U:

(iv) static state feedback, if both F and G are

static. O

The regularity defined in (i) above means
that all possible output trajectories that can
be produced by the original system can also
be produced by the closed loop system.

The problem of realizing a precompensator
by a regular state feedback form can be stated
as follows: For a given transfer matrix H(z) €
PT*™ and a given bicausal precompensator
L(z) € P™*™ for H(z), find, if it exists, a
regular static state feedback(abbreviated by
RSSF) (F, G) such that L(z) = Lrg(z2).

First, we quote the following theorem.
(3.8) Theorem/3][5]

Let H € P™*™ be any transfer matrix hav-
ing a reachable realization ¥ = (A, B,C, D)
with its dimension n, and Hg := (21— A)"!B
be the input/state transfer matrix. Then, a
bicausal precompensator L € P™*™ for H is
realizable by an RSSF if and only if u € U[z]™
and Hgu € U[z|" imply L™lu e U[2]™. O

Based on the above theorem, the following

theorem will be shown.
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(3.9) Theorem

Let H € P™*™ be an transfer matrix hav-
ing a reachable realization ¥ = (A, B, C, D)
with its dimension n, Hg := (21 — A)~!B be
the input/state transfer matrix.

Then, a bicausal precompenstor L € pmxm
for H is realizable by an RSSF if and only if
HL := E is an admissible basis of H.

Further, if L is realizable, then an RSSF
(F,G) that realizes L is given as

G = NO_I:
F=Ng '[Ny Ny --- N,J[BAB --- A" 1B

(1)

where M denotes a right-inverse of matrix M

and
L(z) ' =Ng+ Nzl +Noz724... (2)

Proof

To prove the first assertion, assume that
E={e1,  -,ex} € L{H) is an admissible ba-
sis of H. In order to apply Theorem(3.8),
we have to prove that L~ lu is polynomial
whenever u and Hgu are polynomial. Since u
and Hu are polynomial implies Hgu is poly-
nomial, we show that the following stronger
statement holds, that is, L~ lu is polynomial

vector whenever u and Hu are polynomial

vectors.

From Definition(3.2), there exist coprime

polynomial matrices P and () such that P&
is polynomial and there is a polynomial ma-
trix K such that QW = PEK. Because Hu
can be written as Hu = Q *QHu and @
and PE are coprime, hence for some poly-
nomial vector v,QWu = QPFv. Since E

1s a basis of L(H), we can take E and P
as above. Let p := (z — a)¥, then we have
that L™'u = E~'Hu = p(QPE)"1QWu is
polynomial. This means that the sufficiency
1s proved. Since F is a basis of L(H), by The-
orem(3.8) the necessity is clear.

To show the second assertion, assume that

L 1s realizable by an RSSF (F, G). Then, (3.5)
and (2) lead to the relations

L(2)~' =G™(I - FHg(2))
= G_I—G_IFﬂs(Z) = INp

le_1_|_. " (3)

Since Hg(z) is strictly proper, it follows from
(3) that

G=Ng', FHs(2) =I—- N;1L(2)"! (4)

Now, noticing Hg(z) = (21 — A)~'B and ex-
panding both sides of (4) in powers of z~!
yield
F(Bz"!4+ ABz~2+...)

=Ny (Niz7 b+ Noz™2 42 (5)

Since ¥ = (A, B, C, D) is a realization of H(z)
with dimension n, (5) is satisfied if and only
if the first n terms of both sides of (5) need
to be equal. That is, the equality

F[BAB --- A" 'B] = —~N;*[N1 Ny --- Ny]

(6)
is equivalent to (5). By the reachability of
3, [B AB --- A™!B] € U™™ is a sur-
jective homomorphism from U™ to U™. So,

for the standard basis {e;,---,e,} of U”,

choose n vectors &1,...,&, from U™ such
that [B AB --- A" 'BJ¢; = e;. Then, the
matrix [£;, -+, &n] € U™ is a right inverse

matrix of [B AB --- A" 1B] , and hence
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B AB --- A" 1B] has a right-inverse matrix,
denoted by [B AB --- A" !B € yrm*n,
Therefore, (6) gives

F=-Ny'[Ni Ny -+ N;][BAB --- A" 'B]f ¢

umxn

This completes the proof that L is realizable
by an RSSF (F, &) given by (1).

4. Concluding Remarks

The notion of admissible GCD given by
Data and Hautus in (3] is defined as follows.

Let wy, -, wm € P. A GCD d of wy,---,
Wy, 18 called admassible if there exist polyno-
mials ¢ and p such that pd and qw;/pd, i =
1,---,m are polynomials, and p and ¢ are co-
prime in U|[z].

Clearly, this is the case of Defination (3.2)
when r = 1, m = 1. Hence, the notion of
admissible basis is a generalization of the ad-
missible GCD.

Various factorization approaches of trans-
fer matrices for linear systems defined over
the real number field have been studied and
applied for various important control prob-
lems (see, e.g., [2][4]{7][9][13] and the refer-
ences therein). In particular, the factorization
approach using stable transfer matrices has
been thoroughly studied and has played an
important role to develop a new control the-
ory, called the H, control theory ([4][9][13]).

On the other hand, a general factorization

theory for transfer matrices of linear systems
over UFD was developed by H. Inaba, N. Ito

and W. Wang in [6]. And as an application

of this theory they had obtained a solution|6)

to the problem of the realizability of precom-

pensators stated as above. The method given
in this paper is different from that in {6]. But,
because FE is a basis of L(H), H can be writ-
ten as H = FK for some K. This expression
can be considered as another factorization of
H from that in [6]. And it seems that there
18 a possibility to further investigate various
problems on systems over rings in this line.
For instance, the stabilizability problem, var-
ious decoupling problems and some other de-

sign problems.
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