ミクロの傷を探知する新技術;アコースティック・エミッション ~新素材検査システムの構築と応用~

The New Technology to Detect the Microcrack ; Acoustic Emission \sim Construction Method of New Material Testing System and It's Application \sim

中山 光幸・伊澤 悟

Mitsuyuki NAKAYAMA Satoru IZAWA

§ 1. はじめに

金属と異なってセラミックスは固いほど脆く、微 細な傷が誘因となって大規模破壊に至る。これが、 セラミックスのエンジン等への応用を阻む一因であ る。アコースティック・エミッション(AE)とは、 荷重で物体が振動波を放出する現象である。筆者は これまでの研究で、セラミックスの強度試験時に破 断する迄に放出されるAE振動波はその微構造やミ クロ破壊プロセスと密接な関係があることを明らか にした¹²⁰。

そこで、本稿では研究成果の代表例として、①光 ファイバの破面判定法、及び、②バイオセラミック スのAE特性の材質依存性の二つを紹介する。①は ネットワーク工事現場で光ファイバの破面形態判定 への応用、②は人工骨等の生体材料用バイオ・セラ ミックスの微構造解析への応用例である。これらは、 いずれも破壊試験(DT)であるが、AE現象として の解析手法は非破壊検査(NDT)とほぼ、同様に扱 えることに留意されたい。

なお、本稿は平成16年の産学技術振興交流会の 原稿を加筆したものである。

§2. アコーステック・エミッションの概要³⁾⁴⁾

2.1 AEは固体の加圧に対する悲鳴である

規模の大小や破壊音が聞こえるか否かを問わず、 物体が壊れる場合には音が放出される。このように 荷重即ち応力を受けている材料が変位または亀裂を 生じて、振動波あるいは音波を放出する現象を『ア コーステック・エミッション』(以下AEと略記) と呼んでいる。

2.2 A E 研究の歴史

~日本がリードしてきたAE研究~

AE研究は1950年代初期のドイツのカイザーの 研究に始まるとされている。1960年に入って、米 国での活発な研究の結果、AEは非破壊検査法の実 用的な手段として普及しはじめた。主な応用として は、ロケットや原子力の分野で使用される高圧容器 の圧力試験等があげられる。

日本でのAE研究は、地震に起因している。そして、岩石に関するAEでは優れた研究が多い。 1969年に日本非破壊検査協会の協力でAE委員会 が設立された。そして1970年には、我国に於いて AEの国際会議であるIAES(International Acoustic Emission Symposium)の第一回が開か れ、その後2年毎に日本で開催されてきた。このよ うに、日本は世界のAE研究をリードする国の一つ といっても過言ではない。

2.3 AEの応用

AEの応用は現在、広い分野に及んでいる。将来 的には、小形電子部品や先端材料の信頼性評価法の 不可欠の手法として導入されるものと考えられる。 主な応用分野を以下に示す。

- 1.先端材料の物性研究・試験
- 2.応力腐食割れの検出
- 3. 圧力容器や溶接部のモニタリング
- 4.工具損傷の検出
- 5.オンラインモニタリング(OLM)

2.4 AEの特徴と重要性

AE法の特徴を以下に示す。

1. リアルタイム性

稼働状態でシステムの計測・評価が行える。これ は逆に言えば、荷重が加わらない場合には測定でき ないことになり、欠点とも成り得る。

2. 事前予知性

大規模破壊に至る以前の、初期段階での破壊を捉 えることができる。

3. 高分解能性

広帯域のAEセンサと高利得増幅器を使い、コン ピュータを用いた信号解析を行えば、微小破壊の位 置・大きさ等が数十ミクロンの分解能で標定できる。

§3. AEによる非破壊検査法の基礎技術

3.1 AE解析法の種類と特徴

AEによるNDT(非破壊検査法)にはイベント解 析法と原波形解析法の二つがある。それぞれの概要 と特徴を次に示す。

1. イベント解析法

試験材料が放出したAE波形の情報(立ち上がり 時間、最大値、エネルギー等)をAEパラメータと して抽出し、後でそれらのパラメータの解析から材 料の特性を明らかにする方法である。膨大な情報と なるAE波形をパラメータ化するという、一種の情 報圧縮処理を経るために、システムの処理速度、メ モリ容量の負担が少なく、システムコストが低減で きる。

2. 原波形解析法

材料が発生したAE波形そのものを解析する方法 である。即ち、測定されたAE波形から材料内部の 亀裂で発生した原波形を推定したり、AE波形の周 波数スペクトルを解析して試験材料の特性を明らか にする。試験中に発生する全てのAE波形を正確に 保存する必要があるために、高速・大容量メモリが 必要となり、高性能で高価なシステムとなる。

ただし、近年はAD変換器やCPUの高速化とメ モリ単価の低下により、上述のイベント解析法と原 波形解析法を兼備したAE計測システムが中程度の 価格で実現できるようになっている。

3.2 雑音防止法

AE信号検知に用いるAEセンサには、一般に圧 電素子が使用される。これは測定対象の変位を電圧 として検知する。AEセンサは一種のコンデンサで あって、空間の微小電圧やセンサからプリアンプま での導線に誘起される電圧(環境雑音電圧 en)がAE 信号に混入することが多い。原理上、enで検知で きるAE信号の最小限界が決まる。したがって、こ の環境雑音電圧はできるだけ小さくすることが望ま しい。

その具体的な方法としては、第一にセンサからプ リアンプまでの導線に静電シールドを施す。第二に、 AEセンサの周囲に繋がるもの(導体)は全てを一点 アースする必要がある。強度試験機、プリアンプを はじめとして計測ボードを収納しデータ処理を行う ワークステーション等も含めて、全てを一点アース することで雑音防止法が完成する。

3.3 AEパラメータの選定

材料試験で発生するAE信号からは、様々なAE パラメータが得られる。主なAEパラメータの種類 と得られる情報を以下の(表3.1)に示した⁵⁾。AE 法による非破壊検査の目的と供試材料のアコーステ ィック・エミッション特性を考慮して、同表より最 適なAEパラメータを選ぶ。

(表3.1)	AEパラ	メータと	·その情報 ⁵⁾
(2(0,1)		/ / 🤇	

AEパラメータ	情報
蓄積事象数	亀裂、損傷の発生数
累積エネルギー	亀裂、損傷の大きさ
事象率、計数率	亀裂、損傷の進行過程
振幅・エネルギー分布	亀裂、損傷の型、進行過
周波数スペクトル	亀裂、損傷の性質
到達時間差	亀裂、損傷の発生位置
立ち上がり時間	亀裂、損傷の進行速度
持続時間	AE波と雑音との識別

§4. 低価格・高性能なAE検査システム構築法

AE検査システムの構築に当たっては、導入目的 や現在の所有機器、予算金額等を考慮して、①最小 構成/②中規模システム/③高性能AE検査システ ムのいずれを選ぶかを決定する。始めに数万円の投 資で済む①のシステムでスタートして、計測・解析 のノウハウを学んだ上で、最終的には③に至るのも 一つの方法である。以下に各システムの構成を略記 する。()内は主要機能または型名である。

4.1 最小構成;単発AE計測型

- AEセンサ(汎用型)
- 2) デジタルオシロスコープ(データ記憶)
- 3) パソコン(汎用データ解析)
- 4.2 中規模システム;単発AE計測型
 - AEセンサ(汎用型)
 - AEプリアンプ(広帯域型)
 - 3) デジタルオシロスコープ(データ記憶)
 - 4)パソコン(汎用データ解析)

4.3 高性能AE検査システム;連続AE計測型

- 1) AEセンサ(広帯域型)
- 2) AEプリアンプ(広帯域型)
- 3)専用ワークステーション (ADボード+専用解析ソフト)

§ 5. A E 技術の応用例(1) 光ファイバ断割加工時の破面形態判定¹⁾

5.1 研究背景

光ファイバを新規に敷設あるいは増設する場合に は、光ファイバの断割・接続作業が必要となる。こ の際、接続に望ましい光ファイバの断割破面の条件 はファイバ軸に対して直角でかつ平坦な形態、即ち ミラー面となっていなければならない。現在、この 光ファイバの切断・接続は、現場の熟練者が断割器・ 溶着器等を使って行っている。これらの機器の使用 で、光ファイバの断割破面はおよそ90%の確率で ミラー面となるという結果が得られている。これは 逆に考えると、一割近い不良率が存在する。今後の 光ファイバネットワークの飛躍的な拡大が見込まれ る現在、この数値は、懸案として改善が期待される ものである。というのは、このために現場サイドで の伝送損失の全数検査工程が必要となり、作業能率 が著しく低下してしまうからである。従って、現場 で光ファイバの接続作業を行う場合に、ファイバ端 面が接続に適したミラー面であるかどうかを簡便に 判定するコンパクトな手段の開発が望まれていた。

5.2 実験方法および結果の代表例

供試料は、チタンコート強靭化光ファイバ(以下 Tiファイバと略記)およびSM型石英光ファイバ(同 SMファイバ)の二種類である。光ファイバの断割加 工には、光ファイバカッタを使用した。ファイバー カッタの簡略図を(図5.1)に示す。断割加工時の AE波形及びファイバの破面形態の測定結果の代表 例を(図5.2)に示した。

5.3 破面形態とAEパラメータの関係

1. AEエネルギーと最大振幅の関係

(図5.3)にTIおよびSMファイバのAE波エネルギ ーEと最大振幅 Amaxの関係を示す。同図中の測定 値の近似曲線を求めたところ、SM、TIとも以下に 示す式で累乗近似できることがわかった。

 $E = 9 \times 10^{-5} \times Amax^{2.13}$ (1)

SMとTIが同一近似曲線をもつのは、両者の材質が 同じためと考えられる。また、(図5.3)より、TIファ イバはSMファイバに比べてエネルギーが大である。 これは、TIファイバがSMファイバのクラッド表面 にチタンコートして高強度化されていて、破壊強度 がSMよりTIが2倍ほど優れているために大きな断 割力が必要となるからである。

0

0

20

40

(図5.3)AEエネルギーと最大振幅の関係

Maximum amplitude Amax[mM]

ൈ

80

2. AEエネルギーとミラー面率の関係

ファイバの断面積に対する平坦な面積の割合をミ ラー面率mrとし、破面写真よりミラー面率を求めた。 (図5.4)にAEエネルギーEとミラー面率mrの関係 を示す。同図より、AEエネルギーが小さいほどミ ラー面率は高くなる。また、ミラー面率が90%以 上になるためには、Eの値が0.05 [µJ]以下になる 必要がある。

5.4 まとめ

以上の検討により、光ファイバの断割加工時にア コースティックエミッション計測法によって得られ るAEパラメータを用いれば、光ファイバの破面形 態を判定できることがわかった。

§ 6. A E 技術の応用例(2) バイオセラミックス強度試験時のA E の検討 ~ A E 周波数の材質依存性²⁾~

6.1 はじめに

近年、生体適合性の向上したバイオセラミックス が開発され、人工骨や人工歯根等の生体代替材料と して使用されている。しかしながら、それらの材料 は自然骨に比べて、機械的強度が不足するという問 題点がある。そこで、セラミックスを構成する結晶 粒子や気孔等の微構造要素が機械的特性に及ぼす影 響を解明するための基礎データを得る目的で、強度 試験時のアコースティック・エミッション(AE)を測 定し、AE波平均周波数特性の材質による相違につ いて考察した。そして、生体材料用セラミックスの 強度特性評価にAE波形の共振周波数が使用できる ことがわかった。

6.2 実験方法

実験試料としては、アルミナ(Al₂O₃:略称AlO)及 び正方晶安定化ジルコニア多結晶(同TZP)の二種類 を用いた。形状は3×4×35[mm]である。(表6.1) に供試料の物性定数を示した⁶⁾。(図6.1)に曲げ強度 試験法の概略図を示す。強度はJIS 1601の曲げ強度 の判定法に準じて求め、試料への負荷速度は 0.5[mm/min]とした。AE計測・処理システムの 構成を(図6.2)に示す。

(表6.1) バイオセラミックスの物性定数⁶⁾

	アルミナ	ジルコニア
純度(%)	99.5	99.5
密度(g/cm ³)	3.97	6.05
ヤング率 (Gpa)	400	210
硬度 Hv	1900	1300
三点曲げ強さ (Mpa)	640	1200
平均結晶粒径 (µm)	1.3	0.3

(図6.2) AE計測・処理システムの構成

6.3 実験結果および考察

(図6.3)に(a)アルミナ、(b)ジルコニアの平均 周波数特性を示す。同図(a)より、アルミナではお よそ180,250,350,500,1000[Hz]の6個程度の共振 周波数を持ったAE波が発生している。これはアル ミナの場合、亀裂成長が複数の分岐パターンを生じ ながら成長するために共振周波数が分離したものと 思われる。一方、(図6.3b)のジルコニアでは最低 周波数は0[Hz]近辺、最高周波数が1[kHz]となり、ア ルミナの様にはすべての時刻で明確な共振周波数を 持たない。即ち、ジルコニアでは共振周波数の分布 が不規則になり、破壊の際のAE波周波数は規則性 を示さないといえる。

ジルコニアが高靭性を発現する機構は、正方晶の 相転移によることが明らかにされている⁶⁾。クラッ クの先端で正方晶粒子が単斜晶に転移すると、クラ ック先端の成長方向が各方向に分散される。その結 果、セラミックスに入ったクラックは分岐し多数の 枝分かれを生じ、破壊に必要なエネルギー量が膨大 になり割れにくくなって高靭性となる.この場合に 見られる分岐の不規則性が共振周波数の不規則性を もたらすものと考えられる。

6.4 まとめ

以上の結果より、アルミナとジルコニアの機械的 特性の差がクラック分岐パターンの差異を生じ、そ の結果AE波の平均周波数の出現形態の差を生ずる ことが分かった。今後の課題としては、他のAEパ ラメータの材質依存性の検討があげられる。

最後に、試料を御提供戴いた京セラ(株)に深謝致 します。

(図6.3) バイオセラミックス平均周波数特性

参考文献

1)M.Nakayama, and H.Suzuki: "Analysis on Acoustic Emission of Optical Glass Fiber Produced by a Fiber Cutter~Evaluation of Crack Velocity with Fracture Mechanics~", The ASME International Electric Packaging Technical Conference, July 2001 IPACK2001-15719. 2)中山他; "バイオセラミックスの強度試験時の AEの検討~2. AE周波数の材質依存性~", 信 学ソサエティ大会(2002年9月)A-11-10.

3)中山他: "光ファイバ接続現場でのアコーステックエミッション(AE)の応用~その1.光ファイバ接続へのAE応用の効果~",超音波TECHNO(日本工業出版)(1994)Vol.6,NO.4,pp65-69

4)中山他; "光ファイバ接続現場でのアコーステックエミッション(AE)の応用~~その2.光ファイバ切断面状態のAEによる判定~",超音波TECHNO(日本工業出版)(1994)Vol.6,NO.6,pp40-46

5)岸輝雄,志波光晴: "ミクロの傷を追う", 丸善 (1989)

6)京セラ;"Kyocera ceramic Femoral Head" (2002)

「受理年月日 2005年9月29日」