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Abstract

In this report, the dynamics of a periodically forced two degrees of freedom vehicle model with non-linear spring and
viscous damping is studied. With the first-order averaging method, the analytical expression for stability analysis of the system
is derived. The results show that derived expression can be used to detect the chaotic motion.

I. INTRODUCTION

The quarter-car model which has two degrees of freedom is often used in studying the heave motion of the vehicle [1]-[2]

or dynamic absorber [3]. Since many vehicle components such as suspensions and tires, have non-linear properties, dangerous

instabilities or chaotic responses could be introduced. Usually, the chaotic responses of vehicle model are investigated with

numerical simulation because it is difficult to obtain the analytic solution of the non-linear differential equations. In this

report, we show that when the non-linear spring is described by the third-order polynomial function, the chaotic response of

the quarter-car model can be predicted with the analytic expression.

II. THE 2-DOF VEHICLE MODEL WITH NONLINEAR SPRING AND VISCOUS DAMPING

A. Motion equations

The quarter-car model examined is shown in Fig. 1. The unsprung and sprung masses Mu and Ms are connected by

non-linear springs. The coordinates xu and xs represent the displacement of the masses Mu and Ms with respect to the

ground. The nonlinear spring force fks and fkt are expressed by a third-order polynomial function which is often used in

description of the nonlinear spring property of a car suspension [5]. The system is excited by a harmonic displacement xr(t)
and xr(t) = A cosωt, where A and ω are the forcing amplitude and frequency, respectively.

Fig. 1. 2-DOF Vehicle model

The governing equations of motion for the system are

Msẍs = −fks − fcs −Msg (1)

Muẍu = fks + fcs − fkt − fct −Mug (2)

where

fks = ks1(xs − xu − δs) + ks2(xs − xu − δs)
2 + ks3(xs − xu − δs)

3 (3)

fkt = kt1(xu −A sin(ωt) − δu) + kt2(xu −A sin(ωt) − δu)2 + kt3(xu −A sin(ωt) − δu)3 (4)

fcs = cs(ẋs − ẋu) (5)

fct = ct(ẋu −Aω cos(ωt)) (6)
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�. Dimensionless equations

Now we change the time scale from t to � = ωt. Since x = x(t) and t = ��ω, we have

ẍt = ω2ẍ� (D)

In the new time scale,

xs(t) = xs(� ) = x1� ẋs(t) = ωẋs(� ) = ωẋ1� ẍs(t) = ω2ẍs(� ) = ω2ẍ1

xu(t) = xu(� ) = x2� ẋu(t) = ωẋu(� ) = ωẋ2� ẍu(t) = ω2ẍu(� ) = ω2ẍ2

The motion equation of the system can be rewritten as

Msω
2ẍ1 = −ks1(x1 − x2 − δs) − ks2(x1 − x2 − δs)

2 − ks3(x1 − x2 − δs)
3 − cs(ωẋ1 − ωẋ2) −Msg (G)

Muω
2ẍ2 = ks1(x1 − x2 − δs) + ks2(x1 − x2 − δs)

2 + ks3(x1 − x2 − δs)
3

+cs(ωẋ1 − ωẋ2) − kt1(x2 −A sin � − δu) − kt2(x2 −A sin � − δu)2 − kt3(x2 −A sin � − δu)3

−ct(ωẋ2 −Aω cos � ) −Mug (I)

Gathering the linear terms to the left side of the equations, we have

ẍ1 +
cs

Msω
ẋ1 −

cs

Msω
ẋ2 +

ks1

Msω2
x1 −

ks1

Msω2
x2 = −

ks2

Msω2
(x1 − x2 − δs)

2 −
ks3

Msω2
(x1 − x2 − δs)

3 +
ks1δs −Msg

Msω2

(16)

ẍ2 −
cs

Muω
ẋ1 +

(cs + ct)

Muω
ẋ2 −

ks1

Muω2
x1 +

(ks1 + kt1)

Muω2
x2 =

ks2

Muω2
(x1 − x2 − δs)

2 +
ks3

Muω2
(x1 − x2 − δs)

3

+
kt1A

Muω2
sin � −

kt2

Muω2
(x2 −A sin � − δu)2 −

kt3

Muω2
(x2 −A sin � − δu)3 +

ctA

Muω
cos � +

kt1δu − (ks1δs + Mug)

Muω2

(11)

Let �� = x��A (� = �� 
), then

�̈1 +
cs

Msω
�̇1 −

cs

Msω
�̇2 +

ks1

Msω2
�1 −

ks1

Msω2
�2 = −

Aks2

Msω2
(�1 − �2 −

δs

A
)2 −

A2ks3

Msω2
(�1 − �2 −

δs

A
)3

+
ks1δs −Msg

Msω2

�

A
(12)

�̈2 −
cs

Muω
�̇1 +

(cs + ct)

Muω
�̇2 −

ks1

Muω2
�1 +

(ks1 + kt1)

Muω2
�2 =

Aks2

Muω2
(�1 − �2 −

δs

A
)2 +

A2ks3

Muω2
(�1 − �2 −

δs

A
)3

+
kt1

Muω2
sin � −

Akt2

Muω2
(�2 − sin � −

δu

A
)2 −

A2kt3

Muω2
(�2 − sin � −

δu

A
)3 +

ct

Muω
cos � +

kt1δu − (ks1δs + Mug)

Muω2

�

A
(13)

To obtain the simplified form of equations (12) and (13), parameters related to �̇k (k = �� 
) are introduced. The parameters

related to �̇k (k = �� 
) are defined as

ω�
� =
ω�
�

ω
� ω2

�
� =
k�

M �

� "�
� = 
��
�ω�
� � ��
� =
c�



�

k�M�

(� = �� �� � = �� �) (14)

where ω�
� are the dimensionless frequencies and ω�
� are the linear natural frequencies of the sprung and unsprung masses,

respectively. Thus

"s
s = 
�s
sωs
s = 

cs



�
ksMs

ωs
s

ω
= 


cs



�
ksMs

�

ks

Ms

ω
=

cs

Msω
(15)

and

"s
u =
cs

Muω
� "t
u = 
�t
uωt
u =

ct

Muω
(16)

The parameters related to nonlinear terms are defined asK

��
�
 = ω2

�
�A
 =

ω2

�
�

ω2
A =

�

ω2

k�

M�

A (� = ��� �
� ��� t�� t
� t�� � = �� �� $ = �� �� 
)

then

ks1

Msω2
=

�

ω2

ks1

Ms

=
ω2

s1
s

ω2
= ω2

s1
sA
� = �s1
s
��

ks1

Muω2
=

�

ω2

ks1

Mu

=
ω2

s1
u

ω2
= ω2

s1
uA
� = �s1
u
� (1D)
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and

kt1

Muω2
= �t1
u
��

Aks2

Muω2
= �s2
u
1�

Aks2

Msω2
= �s2
s
1�

A2ks3

Muω2
= �s3
u
2� (1G)

Akt2

Muω2
= �t2
u
1�

A2kt3

Muω2
= �t3
u
2�

A2ks3

Msω2
= �s3
s
2 (1I)

The parameters related to constant terms are expressed as

δs

A
= δ1�

ks1δs −Msg

Msω2

�

A
= δ2�

δu

A
= δ3�

kt1δu − (ks1δs + Mug)

Muω2

�

A
= δ� (26)

Ta)ing expressions (15)-(26) into Eqs. (12)-(13) yields

�̈1 + "s
s �̇1 − "s
s �̇2 + �s1
s
� �1 − �s1
s
� �2 = −�s2
s
1 (�1 − �2 − δ1)
2 − �s3
s
2 (�1 − �2 − δ1)

3 + δ2 (21)

�̈2 − "s
u �̇1 + ("s
u + "t
u) �̇2 − �s1
u
� �1 + (�s1
u
� + �t1
u
�) �2 = �s2
u
1 (�1 − �2 − δ1)
2

+�s3
u
2 (�1 − �2 − δ1)
3 + �t1
u
� sin � − �t2
u
1 (�2 − sin � − δ3)

2 − �t3
u
2 (�2 − sin � − δ3)
3

+"t
u cos � + δ� (22)

The equations (21) and (22) can be put in matrix form by ta)ing nonlinear terms as the forcing functions and moving

them to right side of the equations. They can be written as

M ÿ + �ẏ + �y = f (23)

where

ÿ =

�

�̈1

�̈2

�

� ẏ =

�

�̇1

�̇2

�

� y =

�

�1

�2

�

The mass, damping and stiffness matrices are expressed by

M =

�

� �
� �

�

� � =

�

"s
s −"s
s

−"s
u "s
u + "t
u

�

� � =

�

�s1
s
� −�s1
s
�

−�s1
u
� �s1
u
� + �t1
u
�

�

respectively, while

f =

�

�

�

�

−�s2
s
1 (�1 − �2 − δ1)
2 − �s3
s
2 (�1 − �2 − δ1)

3 + δ2

�s2
u
1 (�1 − �2 − δ1)
2 + �s3
u
2 (�1 − �2 − δ1)

3 + �t1
u
� sin �
−�t2
u
1 (�2 − sin � − δ3)

2 − �t3
u
2 (�2 − sin � − δ3)
3 + "t
u cos � + δ�

�

�

�

�

C. Applying the method of averaging

The method of averaging (0rylov-�ogoliubov technique) is applied in see)ing approximate steady state solutions of

Eq. (23). The steady state responses are assumed as

y(� ) = u(� ) cos � + v(� ) sin � (24)

where u(� ) = ��1(� ) �2(� )�� , v(� ) = ��1(� ) �2(� )�� are ta)en as slow functions about the time � . The motivation for this

assumption is that when #f (# � �) is 	ero, equation (23) has its solutions of the form (24) and (25) with u(� ) and v(� )
constants. Then the velocity is expressed by

ẏ(� ) = −u(� ) sin � + v(� ) cos � (25)

Now we see) a solution to Eq. (23) in the form of Eqs. (24) and (25). Differentiating Eq. (24) with respect to the time � ,

we obtain

ẏ(� ) = u̇(� ) cos � − u(� ) sin � + v̇(� ) sin � + v(� ) cos � (26)

Substituting Eq. (26) to (25) yields

u̇(� ) cos � + v̇(� ) sin � = � (2D)

Also differentiating Eq. (25)

ÿ = −u̇(� ) sin � − u(� ) cos � + v̇(� ) cos � − v(� ) sin � (2G)

Substituting expressions about ÿ, ẏ and y, i.e. Eqs. (2G), (25) and (24), into Eq. (23) and we have

(M v̇ −Mu + �v + �u) cos � − (M u̇ + Mv + �u −�v) sin � = f(u�v� � ) (2I)

Equation (2I) is multiplied by − sin �

− (M v̇ −Mu + �v + �u) cos � sin � + (M u̇ + Mv + �u −�v) sin2 � = f(u�v� � )(− sin � ) (36)
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Multiplying both sides of Eq. (2D) by M cos �

M u̇(� ) cos2 � + M v̇(� ) sin � cos � = � (31)

Adding Eqs. (31) and (36) and note M u̇(� ) cos2 � + M u̇(� ) sin2 � = M u̇(� ), we obtain

M u̇(� ) = f(u�v� � )(− sin � ) − (Mv + �u −�v) sin2 � − (Mu − �v −�u) cos � sin � (32)

With the similar manipulation, we can obtain

M v̇(� ) = f(u�v� � ) cos � + (Mu − �v −�u) cos2 � + (Mv + �u −�v) sin � cos � (33)

The right hand of Eqs. (32) and (33) will be integrated from � to 
� by assuming that u and v remain constant to obtain

the approximated expression of u̇ and v̇.

D. Derivation of e&pression for u(� ) and v(� )

According to assumption expressed in Eq. (24),

�1 = �1 cos � + �1 sin �
�2 = �2 cos � + �2 sin �

(34)

Thus nonlinear term f(��y� � ) in Eq. (23) can be expressed as

f =

�

�

�

�

�

�

�

�

�

�

�

�

�

−�s2
s
1

�

(�1 − �2) cos � + (�1 − �2) sin � − δ1
�2

−�s3
s
2

�

(�1 − �2) cos � + (�1 − �2) sin � − δ1
�3

+ δ2

�s2
u
1

�

(�1 − �2) cos � + (�1 − �2) sin � − δ1
�2

+�s3
u
2

�

(�1 − �2) cos � + (�1 − �2) sin � − δ1
�3

+ δ�
+�t1
u
� sin � − �t2
u
1 (�2 cos � + �2 sin � − sin � − δ3)

2

+"t
u cos � + "t
u cos � − �t3
u
2 (�2 cos � + �2 sin � − sin � − δ3)
3

�

�

�

�

�

�

�

�

�

�

�

�

�

(35)

Now we derive the expression for u̇(� ) which is given in Eq. (32). The right hand of Eq. (32) is integrated from � to 
�
by assuing that u(� ) and v(� ) remain constant. Ta)ing Eq. (35) into Eq. (32), then

M u̇(� ) �
�


�

�

2�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

−�s2
s
1

�

(�1 − �2) cos � + (�1 − �2) sin � − δ1
�2

−�s3
s
2

�

(�1 − �2) cos � + (�1 − �2) sin � − δ1
�3

+ δ2

�s2
u
1

�

(�1 − �2) cos � + (�1 − �2) sin � − δ1
�2

+�s3
u
2

�

(�1 − �2) cos � + (�1 − �2) sin � − δ1
�3

+ δ�
+�t1
u
� sin � − �t2
u
1 (�2 cos � + �2 sin � − sin � − δ3)

2

+"t
u cos � + "t
u cos � − �t3
u
2 (�2 cos � + �2 sin � − sin � − δ3)
3

�

�

�

�

�

�

�

�

�

�

�

�

�

(− sin � ) ��

−
�


�

�

2�

�

(Mv + �u −�v) sin2 � �� −
�


�

�

2�

�

(Mu − �v −�u) cos � sin � �� (36)

Since
�

2�

�
sin2 � �� = � and

�

2�

�
cos � sin � �� = �, integration of the second and the third terms of expression (36)

become

−
�


�

�

2�

�

(Mv + �u −�v) sin2 � �� = −
�



(Mv + �u −�v) (3D)

−
�


�

�

2�

�

(Mu − �v −�u) cos � sin � �� = � (3G)

and

M u̇(� ) � −
�



(Mv + �u −�v) +

�

�

�

�

�

�

�

�

�

�

�

�

−
�

�
(�2 − �1)

�

�c�(�2 − �1)
2 + (�2 − �1)

2� + ��(�c�− 
�)
�

�

�
f (�2 − �1)



(�2 − �1)
2

+ (�2 − �1)
2

�

+
�

�
k

�

�2

2
+ �2

2

�

(�2 − �)

−
�

�
k�2

2
+

�

�

�
k +

�



k�2 +

�



f�2 − ��− ��

�

�2

+

�

��−
�



f�2

�

�1 +

�

�� −
�

�
k −

�



k�2 −

�





�

�

�

�

�

�

�

�

�

�

�

�

�

(3I)
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With the same procedure, we also have

M v̇(� ) �
�



(Mu − �v −�u) +

�

�

�

�

�

�

�

�

�

�

�

�

�

�
(�2 − �1)

�

�c
�

(�2 − �1)
2 + (�2 − �1)

2
�

− ��� + �
c�2
�

�

�
f (�1 − �2)

3 +
�

�
f (�1 − �2)

2 (�1 − �2) −
�

�
k�3

2

+

�

�

�
k�2 −

�

�
k�2

2
+ ��−

�



f�2 + �� −

�



k�2 −

�

�
k

�

�2

+

�

�



f�1�

2 − ��

�

�1 +
�



�

�

�

�

�

�

�

�

�

�

�

�

�

(46)

where � = �s2
s
1, � = δ1, c = �s3
s
2, � = δ2, � = �s2
u
1, f = �s3
u
2, g = δ�,  = �t1
u
�, � = �t2
u
1, � = δ3, k = �t3
u
2

and � = "t
u, respectively. From Eq. (23), we )now

−
�



�u =

�

−1

2
"s
s

1

2
"s
s

1

2
"s
u −1

2
("s
u + "t
u)

� �

�1

�2

�

=

�

− 1

2
"s
s�1 + 1

2
"s
s�2

1

2
"s
u�1 − 1

2
("s
u + "t
u)�2

�

(41)

Thus, Eq. (3I) can be rewritten as

M u̇(� ) = −
�



(Mv + �u −�v) = −

�



(M −�) v +

�

�1

�2

�

(42)

where

�

�

�1

�2

�

� =

�

�

�

�

�

�

�

�

�

�

�

�

−
�



"s
s�1 +

�



"s
s�2 −

�

�
(�2 − �1)

�

�c�(�2 − �1)
2 + (�2 − �1)

2� + ��(�c�− 
�)
�

�



"s
u�1 −

�



("s
u + "t
u)�2 +

�

�
f (�2 − �1)



(�2 − �1)
2

+ (�2 − �1)
2

�

+
�

�
k

�

�2

2
+ �2

2

�

(�2 − �)−
�

�
k�2

2
+

�

�

�
k +

�



k�2 +

�



f�2 − ��− ��

�

�2

+

�

��−
�



f�2

�

�1 +

�

�� −
�

�
k −

�



k�2 −

�





�

�

�

�

�

�

�

�

�

�

�

�

�

(43)

Note

−
�



�v = −

�




�

"s
s −"s
s

−"s
u "s
u + "t
u

� �

�1

�2

�

=

�

− 1

2
"s
s�1 + 1

2
"s
s�2

1

2
"s
u�1 − 1

2
("s
u + "t
u)�2

�

(44)

then Eq. (46) can be rewritten as

M v̇ =
�



(Mu − �v −�u) =

�



(M −�)u +

�

�3

��

�

(45)

where,

�

�

�3

��

�

� =

�

�

�

�

�

�

�

�

−
�



"s
s�1 +

�



"s
s�2 +

�

�
(�2 − �1)

�

�c
�

(�2 − �1)
2 + (�2 − �1)

2
�

− ��� + �
c�2
�

�



"s
u�1 −

�



("s
u + "t
u)�2+

�

�
f (�1 − �2)

3
+

�

�
f (�1 − �2)

2
(�1 − �2) −

�

�
k�3

2

+

�

�

�
k�2 −

�

�
k�2

2
+ ��−

�



f�2 + �� −

�



k�2 −

�

�
k

�

�2+

�

�



f�1�

2 − ��

�

�1 +
�



�

�

�

�

�

�

�

�

�

(46)

III. STA�ILIT� ANAL�SIS

Equations (42) and (45) represent a system of four scalar, first order, autonomous, ordinary differential equations. Obviously,

constant solution of the averaged system represented by Eqs. (42) and (45), correspond to 
�-periodic motions of the original

system (23). The condition leading to these solutions is expressed by

u̇ = v̇ = 6 (4D)

Applying Eq. (4D) in Eqs. (42) and (45) leads to a system of four coupled non-linear algebraic equations for �� and ��

(� = �� 
).

−
�



(M −�)v +

�

�1

�2

�

= 6

�



(M + �)u +

�

�3

��

�

= 6 (4G)

The stability analysis of a located periodic solutions of Eq. (23), say u� = (�1� �2�)
� and v� = (�1� �2�)

� , is performed

by letting

u(� ) = u� + u1(� )� v(� ) = v� + v1(� ) (4I)
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TA�LE I

PARAMETERS OF THE NUMERICAL MODEL

Ms 6.6I4 )g Mu 6.353 )g

ks1 51D.G NLm ks2 2662G.6 NLm2

ks3 D1G34I.6 NLm3 kt1 3G6.G NLm

kt2 1I641.6 NLm2 kt3 56336D.6 NLm3

cs 1.35 N·sLm ct 1.G N·sLm

A 6.61 m

where u1(� ) = (�11 �12)
� and v1(� ) = (�11 �12)

� are small perturbation from the periodic solution and u� and v� are the

steady state solution of Eq. (4G).

�1(� ) = �1� + �11(� )� �1(� ) = �1� + �11(� )
�2(� ) = �2� + �21(� )� �2(� ) = �2� + �21(� )

(56)

Substituting Eq. (56) into Eqs. (42) and (45), expanding the resulting equations in Taylor series with respect to �11, �21,

�11, and �21 and )eeping terms up to the first order results in the linear system, the perturbed equations can be obtained

which is a linear system in the from

�̇ = A� (51)

where

� = ��11(� ) �21(� ) �11(� ) �21(� )�� (52)

and

A =
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(53)

where
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, (� = �� 
� �� �� � = �� 
) are first order Taylor expansion at (u��v�). Then by %udge the eigenvalues

of the coefficient determinant of Eq. (53), the stability o periodic solutions can be determined.

• If the real part of all the eigenvalues is negative, then the periodic solution is stable5 otherwise, it is unstable.

• If a real eigenvalue changes sign, it is a saddle-node-type bifurcation and may result in %ump phenomena.

• If there exists a pair of complex con%ugate eigenvalues whose real part changes sign, it is termed Hopf bifurcation and

results in quasiperiodic vibrations.

IV. NUMERICAL E�AMPLE

In order to validate the derived equations for stability analysis, a case study was conducted. The parameters used are shown

in Table I and they are from an experimental model [4]. Figure 2 show that responses of approximated system are close to

ones obtained by direct integration of original system as f = 
 H	. The results indicate that the expression (43) and (46) for

�� (� = �� 
� �� �) are derived correctly.

The Poincar7e maps of the responses of the system are shown in Fig.3. Each Poincar7e map contains 16,666 sampling points

and shows the existence of strange attractors. In this case, the computation of the corresponding eigenvalues of Eq. (53) gives

������ � ���
��� and −����
� � ��



�, which also indicates the existence of chaotic motions.

V. CONCLUDING REMAR0S

In this report, the analytical expression for stability analysis of a a two degrees of freedom non-linear vehicle model is

given by applying the first order averaging method. The simplification was made in order to obtain Eq. (51). However, the

analytical condition is still useful since it gives a guideline for parameter selection in dynamic design of the system. If more

accurate expression is needed, the higher-order averaging method can be used and it is left to further studies.
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Fig. 2. System responses from dimensionless and averaging equations
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Fig. 3. Poincar7e maps of chaotic motion of the system (A = 0�01 m, � = 11�0 H	).
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