NI TS S5 B P AR FEAC 22 31
% 4 0 75 (2008) 31 — 38

Analysis of Dynamics of a 2 DOF Non-linear Vehicle Model
with First-order Averaging Method

Qin Zhu Shan Liang
Dept. of Mechanical Engineering Automation Academy
Oyama National College of Technology Chonggqin University
zhu@oyama-ct.ac.jp lightsun@cqu.edu.cn
Abstract

In this report, the dynamics of a periodically forced two degrees of freedom vehicle model with non-linear spring and
viscous damping is studied. With the first-order averaging method, the analytical expression for stability analysis of the system
is derived. The results show that derived expression can be used to detect the chaotic motion.

[. INTRODUCTION

The quarter-car model which has two degrees of freedom is often used in studying the heave motion of the vehicle [1]-[2]
or dynamic absorber [3]. Since many vehicle components such as suspensions and tires, have non-linear properties, dangerous
instabilities or chaotic responses could be introduced. Usually, the chaotic responses of vehicle model are investigated with
numerical simulation because it is difficult to obtain the analytic solution of the non-linear differential equations. In this
report, we show that when the non-linear spring is described by the third-order polynomial function, the chaotic response of
the quarter-car model can be predicted with the analytic expression.

II. THE 2-DOF VEHICLE MODEL WITH NONLINEAR SPRING AND VISCOUS DAMPING

A. Motion equations

The quarter-car model examined is shown in Fig. 1. The unsprung and sprung masses M, and M are connected by
non-linear springs. The coordinates x, and x, represent the displacement of the masses M, and M, with respect to the
ground. The nonlinear spring force fis and fx; are expressed by a third-order polynomial function which is often used in
description of the nonlinear spring property of a car suspension [5]. The system is excited by a harmonic displacement x,.(t)
and xz,.(t) = Acoswt, where A and w are the forcing amplitude and frequency, respectively.
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Fig. 1. 2-DOF Vehicle model

The governing equations of motion for the system are

Msfis = _fks - fcs - A[sg (1)
M,i, = fks+fcs_fkt_fct_Mug 2
where
fks = ksl(xs — Ty — 59) + ksZ(ms — Ty — 53)2 + ks3($s — Ty — 53)3 (3)
fee = ke(zy — Asin(wt) — 8,) + k(2 — Asin(wt) — 6,)% + ki3 (z, — Asin(wt) — 6,)3 %)
fcs = Cs(l"s - Tu) (5)

fo = ¢y — Awcos(wt)) (6)
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B. Dimensionless equations

Now we change the time scale from ¢ to 7 = wt. Since x = x(t) and ¢t = 7/w, we have

#y = w?d, (7)
In the new time scale,
z,(t) = 25(7) =21,  Ds(t) = wiy(1) = wi1, is(t) = wiiy(T) = Wi
Ty (t) = 2y (T) = 2o, Gy (t) = Wiy (T) = witn, &,(t) = W?d,(T) = Wiy
The motion equation of the system can be rewritten as
Mw?31 = —kg(v1 — 22 — 85) — ksa(x1 — 22 — 05)% — kez(21 — 22 — 65)° — ¢5(wiby — win) — Mg (8)
Mw?3s = ke(z1 — 22— 65) + ksa (21 — 22 — 65)° + kg3 (21 — 22 — 6,)°
tes(wiy — wig) — kyy (w0 — AsinT — 6,) — k(w2 — AsinT — 6,)? — kyz(z2 — AsinT — §,)3
—ci(wig — AwcosT) — Myug )
Gathering the linear terms to the left side of the equations, we have
.. Cs . Cs . ksl ksl ks2 2 ksS 3 kslés - M&g
_ _ - _ e — )2 - D8 2o —6 DslPs — Psd
R VRS v v Ll v K Rt v oA G B Rl v G B B sy o
(10)
. Cs . (Cs + ct) . ksl (ksl + ktl) o ks2 2 ksB 3
) Muwml + Muw To MuwQ xr + MuwQ T = Muw2 (.131 X9 59) + Muw2 (1'1 €To 6g)
ko A k k A k164 — (k105 + M,
]\;:WQ sint — Mizﬂ (g — AsinT — 5u)2 _ M:if? (x9g — AsinT — 5u)3 + J\Cituw cosT + (]\4:w2 + g)
(11)
Let y; = x;/A (i = 1,2), then
. Cs . Cs . ks ko1 _ Akgo s 2 A2ks3 s 3
o ot R LA VAL Vo (Y1 — 2 Z) Moot (Y1 —y2 Z)
kelds - Meg 1
—_ = 12
+ Myw?2 A (12)
. Cs . (Cs + Ct) . ksl (ksl + ktl) _ AksZ 5s 2 A2k33 58 3
Y2 Muwyl * M,w 2 M,w? vt M,w? Y2 = M,,w? (1 = > A) + M,w? (1 =92 A)
ktl . AktZ . 5u 2 Agkt?) . (Su 3 Ct kﬂéu - (ksl(ss + Mug) 1
+Muw2 sinT — M2 (y2 —SsInT — Z) — M,w? (y2 —sInT — Z) + Mo COST + M2 a
13)

To obtain the simplified form of equations (12) and (13), parameters related to ¢, (k = 1, 2) are introduced. The parameters
related to g (k= 1,2) are defined as
_ Wiy o _ ki A (i

Wij == Wi = o §ij = 2Giwigs  Gig = 5=
OV}

- A = s j=su) (14)

where w; ; are the dimensionless frequencies and w; ; are the linear natural frequencies of the sprung and unsprung masses,
respectively. Thus

ks
Cg Ws g Cg M. Cs
= 2wy = 2—— 2% — 9 £ = 15
55,8 CS,S 5, ¢ QM w 2 ksMs w Mgw ( )
and
Cs Ct
=5 =2 = 16
gs,u Muwa ét,u Ct,uwt,u Muw ( )
The parameters related to nonlinear terms are defined as:
s a0 9 e L ki, .
Nigo = wi ;A" = FA = EMJ-A (i = s1,82,83,t1,t2,t3; j=s,u; £=0,1,2)
then
ks 1 ka _ @hs ks 1 ka _ @
! = 5 ! = # = 0-’31 sAO = T)s1,s,05 ! = L — L = wfl,uAO = nsl,u,() (17)

Mow? w2 M, w? ' ' Myw? w2 M, w?
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and
ktl _ Ak‘SQ _ AksZ _ AkaS — 1. (18)
Muwg = Mt1,u,0, Muw2 = Ns2,u,1, Mst = 1s2,s,15 MMUJQ = Ms3,u,2>
Ak‘tQ A2kt3 A2ks3
Vo2~ M2l Mooz~ a2, U2 — Msds2 19
The parameters related to constant terms are expressed as
s ks10s — Mgg 1 Oy k104 — (ks10s + Myg) 1
== 5 s 2 =9 — =94 20
A 1 MSUJQ A 25 A 3 Mu(UQ A 4 ( )

Taking expressions (15)-(20) into Egs. (12)-(13) yields
U1+ Es U1 — o U2+ Ns160 Y1 — Nsts0Y2 = —Ns2.61 (Y1 — Y2 — 01)% — Nszs2 (Y1 —y2 —61)> + 2 (21)

QQ - gs,u ?h + (gs,u + gt,u) 392 - nsl,u,() Y + (TISI,u,O + ntl,u,()) Yz = 7]52,u,1 (yl — Y2 — 61)2
0532 (Y1 — Y2 — 61)> + M1 w0 SINT — Ny2u1 (Y2 — SinT — 33)% — Ny3.02 (Y2 — sinT — d3)°
+&tu cOST + 0y 22)

The equations (21) and (22) can be put in matrix form by taking nonlinear terms as the forcing functions and moving
them to right side of the equations. They can be written as

Myj+Cy+Ky=f (23)

.| s | _ | W
IR
The mass, damping and stiffness matrices are expressed by

10 gs s _gs s Ts1,5,0 —T1s1,s,0
M= . C= : : . K= S 5
|: 0 1 :| [ _gs,u gs,u + gt,u :| |: —MNs1,u,0  Msl,u,0 + Tt1,u,0

where

respectively, while

—Ns2,51 (Y1 — Y2 — 61)% — Ms3.s.2 (Y1 — Y2 — 01)3 + 52
F= Ns2,u,1 (Y1 — Y2 — 51)% + Ns3,u,2 (Y1 — Y2 — 51)% + Mil,u,0 SINT
—Me2,u1 (Y2 —SInT — 83)% — Mg w2 (Y2 — sinT — 83)% + & cOST + 04
C. Applying the method of averaging

The method of averaging (Krylov-Bogoliubov technique) is applied in seeking approximate steady state solutions of
Eq. (23). The steady state responses are assumed as

y(7) = u(r)cosT +v(r)sinT (24)

where u(7) = [u1(7) uz(7)]%, v(7) = [v1(7) v2(7)]T are taken as slow functions about the time 7. The motivation for this
assumption is that when ef (¢ > 0) is zero, equation (23) has its solutions of the form (24) and (25) with u(7) and v(7)
constants. Then the velocity is expressed by

y(7) = —u(r)sinT + v(7) cos T (25)

Now we seek a solution to Eq. (23) in the form of Eqgs. (24) and (25). Differentiating Eq. (24) with respect to the time 7,
we obtain

y(r) = a(r)cosT —u(r)sinT + 0(7)sinT + v(7) cos T (26)
Substituting Eq. (26) to (25) yields
w(7) cosT + 0(7)sinT =0 27
Also differentiating Eq. (25)
Y = —0(7)sinT — u(7) cosT + 0(7) cosT — v(T) sin T (28)
Substituting expressions about ¢, ¥ and y, i.e. Egs. (28), (25) and (24), into Eq. (23) and we have
(Mo — Mu+ Cv+ Ku)cosT — (Mi+ Mv + Cu — Kv)sint = f(u,v,7) (29)
Equation (29) is multiplied by —sin 7
— (M — Mu+ Cv + Ku)cosTsinT + (M4 + Mv + Cu — Kv)sin? 7 = f(u,v,7)(—sin7) (30)
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Multiplying both sides of Eq. (27) by M cost
M4(r) cos® T+ Mo(T)sinTcosT = 0 31
Adding Egs. (31) and (30) and note M(7) cos® 7 + M(7) sin? 7 = M1(7), we obtain
Mu(r) = f(u,v,7)(—sin7) — (Mv + Cu — Kv)sin®? 7 — (Mu — Cv — Ku) cosTsin T (32)
With the similar manipulation, we can obtain
Mv(1) = f(u,v,7)cosT + (Mu — Cv — Ku) cos® 7 + (Mv + Cu — Kv)sin7cos T (33)

The right hand of Eqgs. (32) and (33) will be integrated from 0 to 27 by assuming that « and v remain constant to obtain
the approximated expression of & and v.

D. Derivation of expression for u(t) and v (1)

According to assumption expressed in Eq. (24),

Y1 = U1 COST + vy sinT

Y2 = U2 COST + V2 sinT (34)
Thus nonlinear term f(x,y,7) in Eq. (23) can be expressed as
[ 21 [(u1 — ug) cos T + (v — vg)sinT — 51]2 ]
. 3
—Ns3,s,2 [(u1 — ug) cosT + (v1 —va)sinT — 01" + &,
. 2
f= Ms2,u,1 [(ul —ug) cosT + (v1 — vg)sinT — 61] (35)

. 3
+Ns3,u,2 [(u1 — ug) cosT + (v1 — va)sinT — 01" + &4
01,0 SINT — Ny2.41 (Ug COST + vgsin T — sinT — d3)?
+&u COST 4 &y COST — 14342 (U2 COST + vosinT — sinT — 53)3

Now we derive the expression for 4 (7) which is given in Eq. (32). The right hand of Eq. (32) is integrated from 0 to 27
by assuing that w(7) and v(7) remain constant. Taking Eq. (35) into Eq. (32), then

_ ) 9 -
—1s2,5,1 [(ul —ug) cosT + (v] — v9)sinT — (51]3
—1s3,s,2 [(Ul — UQ) CcOST + (’Ul — 1)2) sint — 61] + 62
27 . 2
Ma(r) =~ 1 Ms2,u,1 [(u1 —ug) cosT + (v] — v9)sinT — 61]3 (—sinT) dr
2 0 +7733,u,2 [(ul — UQ) COST + (Ul — 1)2) sint — 51] + 54
01,0 SINT — Ne2 1 (U2 COST + v sinT — sinT — d3)?2
+&u COST + &4y COST — Mz a2 (Ug COST + vasinT — sinT — §3)3
1 27\'_ 1 27 .
- (MU+CU—KU)Sin27dT——/ (Mu — Cv — Ku)cosTsinTt dr (36)
27[' 0 27T 0

Since fo% sin? 7 dr = 7 and fo% cosTsinT dr = 0, integration of the second and the third terms of expression (36)
become
1 27

~5 (Mv + Cu — Kv)sin® T dr = —% (Mv + Cu — Kv) 37

1 2m 0
~5r (Mu — Cv— Ku)cosTsinTdr = 0 (38)

T Jo
and
— 1 -
—g(vg —v1) {3c[(v2 — v1)? + (u2 — u1)?] + 4b(3cb — 2a) }
1 §f (ve —v1) {(02 — 1)+ (ug — U1)2} +§k‘ (v3 +u3) (v — 1)

Mi(r) & =5 (Mv + Cu — Kv) + 8 . g v 2 (39)

6. 5 9 9 3,9 .
8kv2+<8k+2k3 +2fb eb Z_]>’U2

3,9 .3 3 .5 1
_Jr(eb be)v1+(13 Sk Qk] 2h>
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With the same procedure, we also have

é(ug —uy) {30 [(1}2 - U1)2 + (ug — ul)z] — 8ab + 1201)2} 1

3 3 3 2 3
= - = - —ug) — =k
Mb(7) ~ % (Mu - Cv — Ku) + 81;(“1 1;2) * sf(”13 ve)” (1 3“2) TN (40)
+ | Skvy — Skv3 +eb— S fb* +ij — —kj® — Sk ) ug
4 8 2 2 8

3., 1
L + 5_}"&11)2 - eb) uy + iL |

where @ = 1251, b =01, c =153,52, d =02, € = Ns2,u,1> f =Ns30,2, § =04y b = 11,0,0, T = Me2,u,1, J = 03, K = 3,02
and L = & ,, respectively. From Eq. (23), we know

1 —Lle le, } [u —L&, qur + L& qu
—ZCu = 5Ss,s 56s,s 1 :| _ |: 5G8s,sUl 5Gs,sU2 :| 41

2 %gs,u _%(gs,u + ft,u) U2 %gs,uul - %(Ss,u + gt,u)UZ ( )
Thus, Eq. (39) can be rewritten as

1 1
Ma(r) = —= (Mo + Cu— Kv) = —= (M — K)o+ | ¢! 42)
2 2 Q2
where
ro1 1 1 9 9 7
*ifs,sul + §€s,su2 - g(vz — 1) {30[(1}2 —v1)° + (ug — uy)?] + 4b(3¢b — 2a)}
1 1 3.,
@ _ 3§§s,uu1 - §(€s,u + ft,uéuz + gf évz - ’1311) {(Uz ; U1)2 + (ug — Ul)Q} @3)
Q2 +gk (v3 +u3) (v2 — 1) —gkug + (gk + §kj2 + §fb2 —eb — ij) vy
3.5 .3 3.5 1
I + (eb ifb )1)1 + (zg gk Ekj §h) ]
Note
1 1 gs s _gs s U1 _lgs sU1 + lgs sU2
—5Cv=—3 ’ ’ = 255 25 44
2 v 2 |: 7£s,u gs,u +§t,u :| |: ] :| |: %gs,uvl - %(gs,u +£t,u)v2 “4
then Eq. (40) can be rewritten as
1 1
Mbo=-(Mu—-—Cv—Ku)==-(M-K)u+ @s (45)
2 2 Qu
where,
1 1 1 9 9 5
—58ssU F 5lss2 g(u2 —u1) {3c[(vz — v1)? + (u2 — w1)?] — 8ab + 12cb”}
©s 1 1 3 3 3
Q4 - 5 s,uvl - _(£S,7L + gt,u)v2+_f (ul - UZ)S + _f (vl - 1}2)2 (ul - Ug) - _kug (46)

3 3 3 3, 5 3 3 1
+ (Zk’l)g — gkvg +eb— §fb2 +ij — 51@72 — gk') Ug~+ <§fu1b2 — eb> uy + §L

III. STABILITY ANALYSIS
Equations (42) and (45) represent a system of four scalar, first order, autonomous, ordinary differential equations. Obviously,
constant solution of the averaged system represented by Eqgs. (42) and (45), correspond to 27-periodic motions of the original
system (23). The condition leading to these solutions is expressed by
u=0=0 4N

Applying Eq. (47) in Egs. (42) and (45) leads to a system of four coupled non-linear algebraic equations for w; and v;
(i=1,2).

1 1

—E(M—K)v—&-[%z} =0

1 3

§(M+K)u+[%4} =0 (48)

The stability analysis of a located periodic solutions of Eq. (23), say uo = (u10 u20)? and vg = (vig va9)7, is performed
by letting

u(7) = uo + u1(7), v(7) =vo +v1(7) (49)
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TABLE I
PARAMETERS OF THE NUMERICAL MODEL
M, | 0.694 kg || Mn | 0353 ke

ks1 517.8 N/m ks2 26028.0 N/m?
ks3 | 718349.0 | N/m3 ki1 380.8 N/m
k2 19041.0 N/m? ki3 | 563307.0 | N/m3
Cs 1.35 N-s/m ct 1.8 N-s/m
A 0.01 m

where u;(7) = (u11 u12)T and vy (7) = (v11 vi2)T are small perturbation from the periodic solution and ug and v are the
steady state solution of Eq. (48).

uy(7) = uyo + u11 (1), v1(T) = vi0 + v11(7)

ua(T) = ugo + up1 (1),  2(7T) = vag + v21(7) (50)

Substituting Eq. (50) into Egs. (42) and (45), expanding the resulting equations in Taylor series with respect to u;1, u21,
v11, and vo; and keeping terms up to the first order results in the linear system, the perturbed equations can be obtained
which is a linear system in the from

T = Ax (28]
where
& = [u11() u21(r) v11(r) var(7)]" (52)
and
o0 9@ 0| 0Qi|
8u1 0 8u2 0 (9’[}1 0 8’02 0
1 0 0Q| 0Q| 0Q
M oo 1! 0 —~ (M - K) Oui |g Ouz|g Ovilg Ov2 g
A= { o I } 1 2 + (53)
5 (M —K) 0 9Qs|  0Qs| 0Qs| Qs
8u1 0 6112 0 (91)1 0 61)2 0
0Qa| 0Qa| 0Qa| Q4
L 8u1 0 6u2 0 8v1 0 6”02 0 J
aQ;| 00 . ‘ . , .
where I PO e (1 =1,2,3,4; j = 1,2) are first order Taylor expansion at (ug, vg). Then by judge the eigenvalues
i i 10

of the coefficient determinant of Eq. (53), the stability o periodic solutions can be determined.

« If the real part of all the eigenvalues is negative, then the periodic solution is stable; otherwise, it is unstable.

o If a real eigenvalue changes sign, it is a saddle-node-type bifurcation and may result in jump phenomena.

« If there exists a pair of complex conjugate eigenvalues whose real part changes sign, it is termed Hopf bifurcation and
results in quasiperiodic vibrations.

IV. NUMERICAL EXAMPLE

In order to validate the derived equations for stability analysis, a case study was conducted. The parameters used are shown
in Table I and they are from an experimental model [4]. Figure 2 show that responses of approximated system are close to
ones obtained by direct integration of original system as f = 2 Hz. The results indicate that the expression (43) and (46) for
Q; (i=1,2,3,4) are derived correctly.

The Poincaré maps of the responses of the system are shown in Fig.3. Each Poincaré map contains 10,000 sampling points
and shows the existence of strange attractors. In this case, the computation of the corresponding eigenvalues of Eq. (53) gives
0.0041 + 0.42557 and —0.0828 £ 0.22227, which also indicates the existence of chaotic motions.

V. CONCLUDING REMARKS

In this report, the analytical expression for stability analysis of a a two degrees of freedom non-linear vehicle model is
given by applying the first order averaging method. The simplification was made in order to obtain Eq. (51). However, the
analytical condition is still useful since it gives a guideline for parameter selection in dynamic design of the system. If more
accurate expression is needed, the higher-order averaging method can be used and it is left to further studies.
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Fig. 3. Poincaré maps of chaotic motion of the system (A = 0.01 m, f = 11.0 Hz).
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