エクセルのアシストによる、 定数係数非斉次線形微分方程式の解法

The solutions non-homogeneous consant coefficient linear O.D.E. by Excel.

玉木 正一 Masakazu TAMAKI

1. 高専、大学の1, 2年で習う微分方程式

高専の応用数学の中で微分方程式は概ね、微分方程式の作成、解の性格、変数分離型、同次型、1階線形微分方程式、完全微分方程式、2階線形微分方程式、定数係数斉次微分方程式、定数係数非斉次微分方程式、連立微分方程式の順に学習が行われる。工学的に必要なのは、最後の2つ、定数係数非斉次微分方程式、連立微分方程式と1階線形微分方程式である。大雑把にいうと、その他は環境設定、証明等になる。

2. 微分方程式の解法の学習

計算機による解法、積分による解法、その他変数変換、置換による解法、基礎数学に含まれる代数的な方法を膨大化した方法等がある。初学者が学習する場合、基本的な知識、手計算による方法(15,から 20 ステップ)で学習するのが実際的で、その様な問題を、各分野、手法に対して 8 題から、10 題程度(初等微分方程式)更にステップでは 40 から、50 以上が望ましい。実態は、通常の教科書で 10 ステップ止まりで(新訂微分積分学 II)多くても 20 ステップ程度(初等微分方程式)である。ここでは、エクセルを利用して、ステップ数の多い例題を見る。幅広い内容を 1 題でこなしてしまう事にが出来るので、全体的な視野の養成に役立つ。

3. エクセルはどういう分野で有効か

微分方程式を解くと言う事に限って言うと、部分分数分解、組み立て除法、山辺の方法、多項式のテーラー展開などの知識がと熟練が必要である。実際的な問題(50ステップ以上)を解く際には、以下の技法は是非知って置いて欲しい。

4. エクセルを用いた組み立て除法

基礎数学にある剰余の定理(旧課程の基礎数学に出ている組み立て除法)を用いると1次式の除法は容易である。

例 1
$$\frac{3x^4+2x^3-4x^2-5x-2}{x-2}$$
= $3x^3+8x^2+12x+19+\frac{36}{x-2}$ は $f(x)=3x^4+2x^3-4x^2-5x-2$ と置くと、 $x-2$ での剰 2) 3 $2-4-5-2$ 余は $R(x)=f(2)=36$ となる。商を求めるのには、 6 16 24 38 と言う書式を用いる。

余は R(x)=f(2)=36 となる。商を求めるのには、 6 16 24 38 と言う書式を用いる。 3 8 12 19 36

一部分に入力をすると、剰余は下段の右端の 36 商は左側の係数を持つ、 $3x^3+8x^2+12x+19$ となる。これは便利な方法であるが、微分方程式を解くには更に、ax-b の様に 1 次の項の係数が 1 でないもの、多項式 x^2-2x-2 の様なモニック(最高次の項の係数が 1)な多項式、での除法が必要になってくる。詳しい説明は抜きで、エクセルでの処理の実例を見ていこう。

例 2
$$\frac{3x^4+2x^3-4x^2-5x-2}{2x+3} = \frac{3}{2}x^3-\frac{5}{4}x^2-\frac{1}{8}x-\frac{37}{16}+\frac{79/16}{2x+3}$$
 剰余 $R(x)=f\left(\frac{3}{2}\right)=\frac{79}{16}$ であるが、エクセルの分数

剰余は $4+\frac{15}{16}=\frac{79}{16}$ と求められる。商は、 $\frac{1}{2}\left(3x^3-2\frac{1}{2}x^2-\frac{1}{4}x-4\frac{5}{8}\right)=\frac{3}{2}x^3-\frac{5}{4}x^2-\frac{1}{8}x-\frac{37}{16}$ と後から 2 で割ればよい。エクセルの入力は正式な数式処理ソフトに比べて格段に優れている。また、セル単位の塗り分け等も易しく、構造的な表記の負担も少ない。ヒューマンインターフェイスを良くすると言う考えがしっかりしているのであろう。

例3
$$\frac{5x^5+13x^4-6x^3+6x^2-23x+8}{x^2+3x-1}=5x^3-2x^2+5x-11+\frac{15x-3}{x^2+3x-1}$$
 を組み立て除法で計算すると、2段の

の部分が商 $5x^3-2x^2+5x-11$ で、右の部分 15x-5 が剰余である。

5. 演算子の部分分数分解

定数係数非斉次微分方程式 $f(D)y=\phi(x)$ $D=\frac{dy}{dx}$ の一般解 y は、余関数 y_0 +特殊解 y_1 で表される。例 4 微分方程式 $y'''-4y''+y'+6y=e^x$ を整頓してみよう。

$$(D^3-4D^2+D+6)y=e^x$$
 更に $(D-2)(D-3)(D+1)y=e^x$ となり、 $y=\frac{e^x}{(D-2)(D-3)(D+1)}$ と逆演算子を用いて表される。ここで、 $\frac{1}{(D-2)(D-3)(D+1)}$ を部分分数分解する。

その 1
$$\frac{1}{(D-2)(D-3)(D+1)} = \frac{a}{D-2} + \frac{b}{D-3} + \frac{c}{D+1}$$
 と分解されたとする。両辺に $D-2$ を掛けて、 $\frac{1}{(D-3)(D+1)} = a + \frac{b(D-2)}{D-3} + \frac{c(D-2)}{D+1}$ そこで、 $D=2$ を代入すると、 $\frac{1}{(D-3)(D+1)} = -\frac{1}{3} = a$ を得る。 更に、両辺に $D-3$ を掛けて、 $\frac{1}{(D-2)(D+1)} = b + \frac{a(D-3)}{D-2} + \frac{c(D-3)}{D+1}$ 、 $D=3$ を代入、 $\frac{1}{(D-2)(D+1)} = \frac{1}{4} = b$

同様に、
$$\frac{1}{(D-2)(D-3)} = \frac{a(D+1)}{D-2} + \frac{b(D+1)}{D-3} + c$$
 、 $D=-1$ を代入、 $c=\frac{1}{12}$ を得る。

その2 両辺に (D-2)(D-3)(D+1) を掛けて、 $1=(a+b+c)D^2-(2a+b+5c)D-3a-2b+6c$ 、連立方程式 a+b+c=0, 2a+b+5c=0, -3a-2b+6c=1 を解くと、 $a=\frac{-1}{3}$, $b=\frac{1}{4}$, $c=\frac{1}{12}$, $c=\frac{1}{12}$ を得る。

話の流れから逸れる(直接に微分作用素の部分分数分解を使わない)が、この微分方程式を解いてみよう。

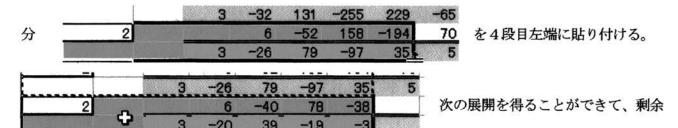
6. 多項式のテーラー展開

組み立て除法を繰り返すことにより、多項式のテーラー展開(有限の長さであるが)が可能になる。 例 5 多項式 $3x^5-32x^4+131x^3-255x^2+229x-65$ を x=2 でテーラー展開しなさい。 本来は多項式であるので、テーラー展開とは言えないのであるが、実際の計算では (x-2) の多項式とし

本来は多項式であるので、テーラー展開とは言えないのであるが、実際の計算では*(x-2)* の多項式として書き直した方が計算は容易である。

G5 = =+F6**\$D\$5

D E F G H I J K


最初に 3 -32 131 -255 229 -65

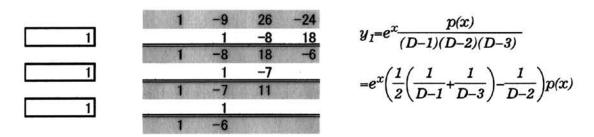
2 6 -52 158 -194 70

の様に2段目を展開点の

値を絶対参照で引用して加算する。最終の 5 が $3x^4-26x^3+79x^2-97x+35+\frac{5}{x-2}$ の剰余となる。

 $3x^4-26x^3+79x^2-97x+35$ に展開を続ける。色の変わっている2段目、3段目の最終列を残した選択部

は-3となる。同様なコピー&ペーストを続けると、

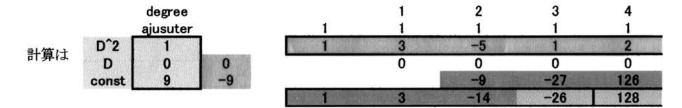

	3	-32	131	-255	229	-65	
2		6	-52	158	-194	70	
	3	-26	79	-97	35	5	
2		6	-40	78	-38		$3x^5 - 32x^4 + 131x^3 - 255x^2 + 229x - 65$
	3	-20	39	-19	-3		nas. As a same separation of the
2	10	6	-28	22			$=3(x-2)^5-2(x-2)^4-5(x-2)^3$
	3	-14	11	3			$+3(x-2)^2-3(x-2)+5$
2		6	-16				を得る。
	3	-8	-5				
2		6					
	3	-2					

7. 指数関数の混じった非斉次線形微分方程式

例 6
$$(D^3-9D^2+26D-24)y=e^xp(x)$$
 の特殊解を求めよ。
$$y_1=\frac{1}{D^3-9D^2+26D-24}e^xp(x)=\frac{1}{(D-1)^3-6(D-1)^2+11(D-1)-6}e^xp(x)=e^x\frac{p(x)}{D^3-6D^2+11D-6}p(x)$$

これは

14


と指数関数と、1階の微分方程式の解の組み合わせになる。

8. 特殊な非斉次線形微分方程式

ある種の形の微分方程式は、全く積分を使わないで(組み立て除法の応用で)解くことが出来る。

例7 微分方程式、 $(D^4+3D^3-5D^2+D+2)y=cos3x$ の特殊解を求めよ。

微分作用素 $D^4+3D^3-5D^2+D+2$ に対して D^2+9 でリダクションを行う。 $(-26D+128)y_1=\cos 3x$


両辺に 26D+128 をかけて、 (26D+128)(-26D+128)y₁=(26D+128)cos3x

 $(-676D^2+16384)y_1=(9\times676+16384)y_1=128\cos 3x-78\sin 3x$

$$y_1 = \frac{128\cos 3x - 78\sin 3x}{22468} = \frac{32}{5617}\cos(3x) - \frac{39}{11234}\sin(3x)$$
 を得る。

例8. $(D^4-2D^3+3D^2-D+2)y=e^{2x}sin2x$ の特殊解を求めよ。

微分作用素 $D^4-2D^3+3D^2-D+2$ に対して $(D-2)^2+2^2=D^2-4D+8$ でリダクションを行う。

$$\ \ \, \pm \circ \tau \quad y_1 = \frac{1}{-5D - 22} \, e^{2x} \sin 2x = e^{2x} \frac{1}{-5(D-2) - 22} \sin 2x = e^{2x} \frac{-1}{5D + 12} \sin 2x$$

$$=e^{2x}\frac{-(5D-12)}{25D^2-144}sin2x = e^{2x} \times \frac{12sin2x-10cos2x}{-25\times 4-144} = \frac{5}{122}e^{2x}cos(2x) - \frac{3}{61}e^{2x}sin(2x)$$

ここで、2次式でのリダクションは、エクセルで実行するので指数関数との交換を先に行った形の1次 の項を含んだ形の方を選んだ。

9. 多項式 p(χ) に対する山辺の方法

指数関数、三角関数等を含まない形、 f(D)y=p(x) に対しては山辺の方法と言う演算子による直接的な代数式の割り算が行われる。これは、複雑になりやすいので次数の低いばあいないしは階数の低い場合にしか適用することが少ない。(ではどうしているか?と言う疑問が出るが、殆どの場合高価な数式処理ソフトを用いて解いている者が多い)

例9 $(D^2+D+1)y=x^2$ の特殊解を求めよ。

$$y_1 = \frac{x^2}{1+D+D^2}$$
 であるが、この計算を直接に小学

校でやるような形式で計算してしまう。つまり仮 の商と、除数を掛けて、被除数から引き算する計 算を続けるのである。

$$\begin{array}{c|c}
x^{2}-2x \\
1+D+D^{2} & x^{2} \\
x^{2}+2x+2 \\
\hline
-2x-2 \\
-2x-2 \\
\hline
0
\end{array}$$

由って $y_1=x^2-2x$ 余関数も計算すると、特性方程式 $t^2+t+1=0$ を解くと $t=\frac{-1 \pm \sqrt{3}i}{2}$ となる。

由って、 $y_0=e^{-x/2}(c_1\cos\sqrt{3}x+c_2\sin\sqrt{3}x)$ となり、一般解 $y=x^2-2x+e^{-x/2}(c_1\cos\sqrt{3}x+c_2\sin\sqrt{3}x)$ を得る。ここでの目的は、上の様な書式をエクセルで自然な計算フォームを作れないかと言うことである。

例 10 $(2+3D+D^2+D^3+2D^4+4D^5)y=x^5-2x^4+3x^3-x^2+2x$ の特殊解を求めよ。

Const 2 黄 1 -2 3 -1 2 D D 3 1 -0.5 -7.5 57 -225 597 D 2 1 -0.5 -10 57 -150 D 3 1 -0.5 -30 114 D 4 2 -1 -1 -120 D 5 4 2 -2 -2	0
D^2 1 -0.5 -10 57 -150 D^3 1 -0.5 -30 114 D^4 2 -1 -120	AND COMPANY OF THE PARK OF THE
D ³ 1 -0.5 -30 114 -120	-664.5
D ³ 1 -0.5 -30 114 -120	199
	-150
D^E 4 1 _2	228
D 5 4 -2	-240
青 1 -9.5 50 -199 443	-627.5
緑 0.5 -4.75 25 -99.5 221.5 **	-313.75

最下段の緑色の数列より、

$$y_1 = \frac{1}{2}x^5 - \frac{19}{4}x^4 + 25x^3 - \frac{199}{2}x^2 + \frac{443}{2}x - \frac{1259}{4}$$
 となる。

このシートの書式は後に述べるが、次の2階の微分方程式を解いてみよう。 例 11 $(D^2+2D-3)y=(x^3+2x)e^{5x}$ を解け。

特性方程式と解は $t^2+2t-3=(t-1)(t+3)=0$, t=1, t=-3 より、余関数は $y_0=c_1e^x+c_2e^{-3x}$ となる。

特殊解は
$$y_1 = \frac{1}{(D^2 + 2D - 3)}e^{5x}(x^3 + 2x) = e^{5x}\frac{x^3 + 2x}{(D + 5 - 1)(D + 5 - 3)} = e^{5x}\frac{x^3 + 2x}{(D^2 + 6D + 8)}$$
 となり、これを山辺の

方法で計算すると

degree		
const	8	
D	6	-0.75
D^2	1	-0.13

5	4	3	2	1	0
0	0	1	0	2	0
	0	0	-2.25	3.375	-3.46875
		0	0	-0.75	0.5625
0	0	1	-2.25	4.625	-2.90625
0	0	0.125	-0.28125	0.578125	-0.36328

下段より $y_1 = \frac{1}{8}x^3 - \frac{9}{32}x^2 + \frac{37}{64}x - \frac{93}{256}$ を得る。

一般解は、
$$y=\frac{1}{8}x^3-\frac{9}{32}x^2+\frac{37}{64}x-\frac{93}{256}+c_1e^x+c_2e^{-3x}$$
 となる。

この様に、 $f(D)y=e^{\alpha x}p(x)$ の形の微分方程式に関しては、高階数、高次数の方程式に関してもうまく行 く。

連立微分方程式に関しては、行列式の手法を用いて、上の方法を用いることが出来る。代数的な部分で エクセルの効果の大きな部分は少ないが、作用素の逆行列式の分母の処理には有効である。

例 12 連立微分方程式
$$\begin{cases} f_{II}(D)x(t)+f_{12}(D)y(t)=\phi_{I}(t) \\ f_{2I}(D)x(t)+f_{22}(D)y(t)=\phi_{2}(t) \end{cases}$$
 の特殊解を求めよ。

例 12 連立微分方程式
$$\begin{cases} f_{II}(D)x(t)+f_{I2}(D)y(t)=\phi_{I}(t) \\ f_{2I}(D)x(t)+f_{22}(D)y(t)=\phi_{2}(t) \end{cases}$$
 の特殊解を求めよ。 これは行列で表すと $\begin{pmatrix} f_{II}(D) & f_{I2}(D) \\ f_{2I}(D) & f_{22}(D) \end{pmatrix} \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} \phi_{I}(t) \\ \phi_{2}(t) \end{pmatrix}$ である。 $F = \begin{pmatrix} f_{II}(D) & f_{I2}(D) \\ f_{2I}(D) & f_{22}(D) \end{pmatrix}$ とすると、

逆行列は
$$F^{-1} = \frac{1}{\det(F)} \begin{pmatrix} f_{22} & -f_{12} \\ -f_{21} & f_{11} \end{pmatrix}$$
 で、特殊解は $\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = F^{-1} \begin{pmatrix} \phi_1(t) \\ \phi_2(t) \end{pmatrix}$ となる。

このとき、 $\frac{1}{\det(F)}$ が今までの計算になり、エクセルが有効の場合が多い。しかし、 $\det(F)$ の次数が

高いので、上記の様な特殊な計算法が必要になる。
例 13
$$\begin{cases} (D^2+2D-1)x+(D^2-D+3)y=-6t^3+19t^2+46t-30 \\ (-D^2-3D-1)x+(3D^2+D-5)y=2t^3-32t^2-78t+41 \end{cases}$$
の特殊解を求めよ。

解答
$$x(t)=3t^3+2t^2-5t+2$$
 , $y(t)=-t^3+7t-5$

解答
$$x(t)=3t^3+2t^2-5t+2$$
 , $y(t)=-t^3+7t-5$ 上記例 12 のように、 $\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} D^2+2D-1 & D^2-D+3 \\ -D^2-3D-1 & 3D^2+D-5 \end{pmatrix}^{-1} \begin{pmatrix} -6t^3+19t^2+46t-30 \\ 2t^3-32t^2-78t+41 \end{pmatrix}$

$$-\frac{1}{4D^4+9D^3-5D^2-3D+8}\begin{pmatrix}3D^2+D-5 & -D^2+D-3\\D^2+3D+1 & D^2+2D-1\end{pmatrix}\begin{pmatrix}-6t^3+19t^2+46t-30\\2t^3-32t^2-78t+41\end{pmatrix}$$

を表計算すると

$$=\frac{1}{4D^4+9D^3-5D^2-3D+8} \begin{pmatrix} 24t^3-11t^2-142t+173\\ -8t^3+9t^2+86t-115 \end{pmatrix}$$

degree		<u> </u>
const	8	
D	-3	0.375
D^2	-5	0.625
D^3	9	-1.13
D^4	4	-0.5

5	4	3	2	1	0
0	0	24	-11	-142	173
	0	0	27	12	-15
		0	0	90	20
			0	0	-162
				0	0
0	0	24	16	-40	16
0	0	3	2	-5	2

degree const	8	15)	0	0	3	9	86	0 -115
	-3	0.375		0	0	-9	0	21
D D^2 D^3 D^4	-3 -5	0.625			0	0	-30	0
D^3	9	-1.13				0	0	54
D^4	4	-0.5					0	0
		•	0	. 0	-8	0	56	-40
			0	0	-1	0	7	-5

ここでは、計算術を問題視するので、ロンスキアンなどのノン・シンギュラーになるかと言う条件は考えない。

10. 3角関数と多項式の積に対する逆変換

三角関数と指数関数の積に対する逆変換はオイラーの公式を用いる。説明を簡単にするために例を用いて計算の流れを考えてみよう。なお、この形式にはエクセルだけでなく代数の知識が必要になる例 $14 (D^2+3D-2)y=(x^4+3x^2+7)\cos 3x$ の特殊解を求めよ。

$$y_1 = \frac{1}{D^2 + 3D - 2} (x^4 + 3x^2 + 7)\cos 3x = \frac{1}{D^2 + 3D - 2} R_e(e^{i3x})(x^4 + 3x^2 + 7)$$

複素数体では、実数、虚数は独立の存在であるから、実数部分だけ求めればよい。

D の多項式に置き戻すと

$$= R_e \Biggl(\frac{(\cos 3x + i \sin 3x)(D^2 + (3D - 11) - (6D + 9)i)}{D^4 + 6D^3 + 23D^2 + 42D + 202} \Biggr) (x^4 + 3x^2 + 7)$$

$$=\frac{\cos 3x(D^2+(3D-11))+\sin 3x(6D+9)}{D^4+6D^3+23D^2+42D+202}(x^4+3x^2+7)$$

$$\frac{\cos 3x(D^2+(3D-11))}{D^4+6D^3+23D^2+42D+202}(x^4+3x^2+7)=\cos 3x\frac{7x^4+12x^3+33x^2+18x+55}{D^4+6D^3+23D^2+42D+202}$$

$$\frac{sin3x(6D+9)}{D^4+6D^3+23D^2+42D+202}(x^4+3x^2+7)=sin3x\frac{9x^4+24x^3+27x^2+36x+63}{D^4+6D^3+23D^2+42D+202}$$
 であるから

degree			5	4	3	2	11	0
const	202	7)	0	A STATE OF THE PARTY OF THE PAR	12	33	18	55
D	42	-0.21		0	5.82178218	-3.85373983	-8.14296987	-0.13435186
D D^2	23	-0.11			0	-9.56435644	-4.22076267	-4.4592454
D^3 D^4	6	-0.03				0	-4.99009901	-1.10106852
D^4	1	-0					0	-0.83168317
-		_	0	7	6.178217822	19.58190373	0.64616845	48.47365105
			0	0.034653465	0.030585237	0.096940117	0.003198854	0.23996857

代数的な形式を見るために、最下段は小数に、101を次々に掛けて、分数に直してみよう。左側が分子で、右の1列が分母である。分子が整数になる様な組み合わせを見つけていく、但し、0.5 はエクセル

18 玉木 正一

に頼らず処理する。

0	0.034653465	0.030585237	0.096940117	0.003198854	0.23996857	1
0	3.5	3.089108911	9.790951867	0.323084225	24.23682552	101
0	353.5	312	988.8861386	32.63150672	2447.919378	10201
0	35703.5	31512	99877.5	3295.782178	247239.8572	1030301
0	3606053.5	3182712	10087627.5	332874	24971225.57	1.04E+08
0	364211403.5	321453912	1018850378	33620274	2522093783	1.05E+10

同様に sin3x についても処理すると、

degree			5	4	3	2	1	0	
const	202		0	9	24	27	36	63	1
D	42	-0.21		0	-7.48514851	-10.301343	-1.83037967	-3.42473727	911
D D^2 D^3	23	-0.11			0	-12.2970297	-11.2824233	-1.00235077	
D^3	6	-0.03				0	-6.41584158	-2.94324086	
D^4	1	-0					0	-1.06930693	
			0	9	16.51485149	4.401627291	16.47135546	54.56036417	101
			0	0.044554455	0.081756691	0.021790234	0.081541364	0.270100813	1
			0	4.5	8.257425743	2.200813646	8.235677729	27.28018208	101
			0	454.5	834	222.2821782	831.8034506	2755.29839	10201
			0	45904.5	84234	22450.5	84012.14851	278285.1374	1030301
			0	4636354.5	8507634	2267500.5	8485227	28106798.88	1.04E+08
			0	468271804.5	859271034	229017550.5	857007927	2838786687	1.05E+10

よって、特殊解は

$$y_1 \! = \! \left(\frac{7}{202} x^4 \! + \! \frac{312}{101^2} x^3 \! + \! \frac{199755}{2 \times 101^3} x^2 \! + \! \frac{332874}{101^4} x \! + \! \frac{2522093783}{101^5} \right) \! \cos\!3x$$

$$+ \left(\frac{9}{202}x^4 + \frac{834}{101^2}x^3 + \frac{44901}{2\times101^3}x^2 + \frac{8485227}{101^4}x + \frac{283876687}{101^5}\right) sin3x$$

を得る。ランダムに問題を作成したのであるが、かなり計算が困難なものになる。

11. 積分への応用

積分は1階の微分方程式と考えると、冗長な公式を簡易化できる。

例 15 e^{2x}cos3x を積分せよ。

$$\int e^{2x}\cos 3x \, dx - \frac{1}{D}e^{2x}\cos 3x = e^{2x} \frac{1}{D+2}\cos 3x = e^{2x} \frac{D-2}{D^2-4}\cos 3x$$

$$= e^{2x} \frac{-3\sin 3x - 2\cos 3x}{-9-4} = e^{2x} \left(\frac{2}{13}\cos(3x) + \frac{3}{13}\sin(3x)\right)$$
これにはエクセルは不要である

例 16 $e^{2x}(-x^5+3x^4+2x^3-5x^2-7x+11)$ を積分せよ。

$$\int e^{2x} p(x) \ dx = \frac{1}{D} \ e^{2x} p(x) = e^{2x} \frac{1}{D+2} (-x^5 + 3x^4 + 2x^3 - 5x^2 - 7x + 11)$$

degree	5	4	3	2	1	0	
const 2	-1	3	2	-5	-7	11	ライム
D 1 -0.5		2.5	-11	13.5	-8.5	7.75	分母領域
	-1	5.5	-9	8.5	-15.5	18.75	2
	-0.5	2.75	-4.5	4.25	-7.75	9.375	1
分子領域 ラベンダー	-1	5.5	-9	8.5	-15.5	18.75	2
	-2	11	-18	17	-31	37.5	4
	-4	22	-36	34	-62	75	8

よって
$$\int e^{2x}(-x^5+3x^4+2x^3-5x^2-7x+11) dx = e^{2x}\left(\frac{-1}{2}x^5+\frac{11}{4}x^4-\frac{9}{2}x^3+\frac{17}{4}x^2-\frac{31}{4}x+\frac{25}{8}\right)$$
 を得る。

グリーンの領域では小数になるので、ライム色の領域の分母とラベンダー色の領域の分子の領域を設け 分数表示になるように工夫した。

12. シミュレーションとまとめ

次の山辺の除法を見てみよう。

例 17 $(D^4+5D^3+3D^2-3D+2)y=2x^5+4x^4+3x^3+5x^2+36x+63$ の特殊解を求めよ。

degree			5	4	3	2	11	0
const	2		2	4	3	5	36	63
D	-3	1.5		15	114	256.5	-1141.5	-4857.75
D^2	3	-1.5			-60	-342	-513	1141.5
D^3	5	-2.5				-300	-1140	-855
D^4	4	-2					-480	-912
		3-76	2	19	57	-380.5	-3238.5	-5420.25
			CHAIR CARL	9.5	28.5	-190.25	-1619.25	-2710.125

表より

$$y_1 = \frac{2x^5 + 4x^4 + 3x^3 + 5x^2 + 36x + 63}{D^4 + 5D^3 + 3D^2 - 3D + 2} = x^5 + \frac{19}{2}x^4 + \frac{57}{2}x^3 - \frac{761}{4}x^2 - \frac{6477}{4}x - \frac{21681}{8}$$

となる。分母は、除数の定数項2は分母の底になっている。エクセルで分子を調整しながら作題してみる。

例 18 $(2D^4-2D^3-3D^2+2D+1)y=x^5+12x^4-40x^3-160x^2+100x-10$ の特殊解を求めよ。

degree				5	4	3	2	1	0
const	1	1	黄	i de la constante de la consta	12	-40	-160	100	-10
D	2	-2	1000		-10	-16	-24	-32	8
D^2	-3	3				60	72	72	48
D^3	-2	2					120	96	48
D^4	2	-2						-240	-96
			青	1	2	4	8	-4	-2

これは、上記フォームの黄色の段4乗以下の数値を0にして作成して、青の段の数値が 10 以下になる様に、黄色段を書き換えていくと適切な問題を作ることが出来る。

解
$$y_1 = \frac{x^5 + 12x^4 - 40x^3 - 160x^2 + 100x - 10}{2D^4 - 2D^3 - 3D^2 + 2D + 1} = x^5 + 2x^4 + 4x^3 + 8x^2 - 4x - 2$$
 を得る。

指数関数の場合では、分母を小さくするために、次の例のような工夫がある。

 $(D-2)(D^3-3D^2+2D-5)+3=D^4-5D^3+8D^2-9D+13$ を利用した微分方程式を作ると例 19 $(D^4-5D^3+8D^2-9D+13)y=3e^{2x}$ の特殊解を求めよ。

解 $f(D)=D^4-5D^3+8D^2-9D+13$ とすると、 $f(2)=2^4-5\times 2^3+8\times 2^2-9\times 2+13=3$ より $y_1=\frac{3e^{2x}}{3}=e^{2x}$ となる。 山辺の方法を使用する場合は、次の例のようになる。

degree			5	4	3	2	1	0
const	1			-12	5	5	170	150
D	-3	3		15	36	9	12	6
D^2	2	-2			-40	-72	-12	-8
D^3	-1	1				60	72	6
D^4	2	-2					-240	-144
	101-101-101-101-101-101		1	3	1	2	2	10
				3	TIE STATE	2	2	10

より

$$\frac{x^5 - 12x^4 + 5x^3 + 5x^2 - 170x + 150}{2D^4 - D^3 + D^2 - 3D + 1} = x^5 + 3x^4 + x^3 + 2x^2 + 2x + 10$$

$$e^{3x}\frac{x^{5}-12x^{4}+5x^{3}+5x^{2}-170x+150}{2D^{4}-D^{3}+D^{2}-3D+1} = e^{3x}(x^{5}+3x^{4}+x^{3}+2x^{2}+2x+10)$$

$$\frac{1}{2(D-3)^{4}-(D-3)^{3}+(D-3)^{2}-3(D-3)+1}e^{3x}(x^{5}-12x^{4}+5x^{3}+5x^{2}-170x+150)$$

ここで $2(D-3)^4-(D-3)^3+(D-3)^2-3(D-3)+1=2D^4-25D^3+118D^2-252D+208$ より 例 20 $(2D^4-25D^3+118D^2-252D+208)y=e^{3x}(x^5-12x^4+5x^3+5x^2-170x+150)$ の特殊解を求めよ。は容易な問題であろう。

連立微分方程式の場合は、作用素行列の行列式が上記の例のような形になっている行列を作る。

$$\begin{pmatrix} 1 & D+3 & D-2 \\ 0 & D-1 & -2 \\ 0 & 1 & D+1 \end{pmatrix} \quad \begin{pmatrix} 1 & D+3 & D-2 \\ 0 & D-1 & -2 \\ 0 & 1 & D+1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ D & 2 & 1 \end{pmatrix} = \begin{pmatrix} D^2-3D-2 & 3D-1 & D-2 \\ -3D+1 & D-5 & -2 \\ D^2+D-1 & 2D+3 & D+1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -2 & D \\ 0 & -1 & -D+1 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} D^2-3D-2 & 3D-1 & D-2 \\ -3D+1 & D-5 & -2 \\ D^2+D-1 & 2D+3 & D+1 \end{pmatrix} = \begin{pmatrix} D^3+2D^2+2D-4 & 2D^2+4D+9 & D^2+2D+2 \\ -D^3+5D-2 & -2D^2-2D+8 & -D^2+3 \\ -D^2-D+1 & -2D-3 & -D-1 \end{pmatrix}$$

例21 連立微分方程式

$$\begin{pmatrix} D^3 + 2D^2 + 2D - 4 & 2D^2 + 4D + 9 & D^2 + 2D + 2 \\ -D^3 + 5D - 2 & -2D^2 - 2D + 8 & -D^2 + 3 \\ -D^2 - D + 1 & -2D - 3 & -D - 1 \end{pmatrix} \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \begin{pmatrix} p_I(x) \\ p_2(x) \\ p_3(x) \end{pmatrix}$$

の特殊解を求めよ。

$$\mathfrak{K} \quad \begin{pmatrix} x_I(t) \\ y_I(t) \\ z_I(t) \end{pmatrix} = \frac{1}{D^2 + 1} \begin{pmatrix} D^2 + 1 & -D^2 + 3D + 3 & 2D^3 - 3D^2 + 11 \\ D^2 + 1 & -D^2 + 2D + 2 & 2D^3 - 2D^2 + 8 \\ -D^3 - 2D^2 - D - 2 & D^3 - D^2 - 7D - 3 & -2D^4 - D^3 + 4D^2 - 13D - 14 \end{pmatrix} \begin{pmatrix} p_I(x) \\ p_2(x) \\ p_3(x) \end{pmatrix}$$

結論として、定数係数非斉次線形微分方程式は純粋数学的には明白で問題のない領域であるが、教育・訓練の場に置いては、途中の冗長な計算により学習者は音をあげてしまう。この計算部分をシートのプログラムする事により、その構造もわかり、実用的な解答に達する事が出来る。例の演算子は全て5階以下にした。特性方程式が、5次式となるが、ニュートン法で実数解を得ることが出来る。更に組み立て除法を用いれば、4次式となり代数的に解くことが出来る。これら解を用いて余関数を求めることが出来るので、是非試して見て欲しい。

小山工業高等専門学校 一般科 E-mail: tamaki@oyama-ct.ac.jp

「受理年月日 2009年9月30日」