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Abstract

In this research, the dynamic responses of a seven-degree-of-freedom ground vehicle model are investigated. It is assumed
that the vehicle is subjected to sinusoid disturbance of the road and the nonlinearity is introduced by the suspensions and tires.
The numerical results show that the chaotic vibration can be induced by the disturbance and it is found that the chaos is not
sensitive to the variation of damping coefficients of the system.

I. INTRODUCTION

Since the disturbance from road may induce uncomfortable shake and noise in the ground vehicle, it is very important
to study the dynamic behavior of the automobile. The vibration of the quarter-car model or half-car model has received
much attention [1]-[3]. In recent years, the full nonlinear ground vehicle model with seven-degree-of-freedom becomes the
research object for dynamic response because the heave, pitch and roll motions of the sprung mass can be investigated with
this model. Zhu and Ishitobi have studied the chaotic motion of a full nonlinear ground vehicle model [4]. The periodic
response, chaotic response were reported. However, the dynamic response of the model under excitation of the relatively
large amplitude was not discussed.

In the present investigation, the frequency response to excitation with large amplitude is studied and the effects of damping
cocfficients on the chaotic responses of the considered system are investigated. The numerical results show that the chaos of
the system is not sensitive to the variation of damping coefficients.

1I. MATHEMATICAL MODEL

The nonlinear seven-degree-of-freedom ground vehicle model is shown in Fig. 1 [4]. It is assumed that the sprung mass
can have the heave, pitch and roll motions while every unsprung masse can only move up and down.

Fig. 1. Nonlinear vehicle model with 7-DOF

Nomenclature
ms Sprung mass Ceufts Ceufr Damping coefficient of front suspension
Iy Roll axis moment of inertia Cedfes Codfr Damping coefficient of front suspension
I Pitch axis moment of inertia Coards Coiirr Damping coefficient of rear suspension
My f Front unsprung mass Cedrts Codrr Damping coefficient of rear suspension
Myr Rear unsprung mass kusgs Kusr Tire spring stiffness
ksg Front suspension spring stiffness Cusfs Cuar Damping coefficient of tire
ksr Rear suspension spring stiffness Nusfs Nusr Nonlinear coefficient of tire spring
Ngf, Ngr  Nonlinear coefficient of suspension spring ([ Zs;, Z¢y, Zy1, Zyr Forcing function
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The suspensions between the sprung mass and unsprung masses are modeled as nonlinear spring and nonlinear damper
elements. The dynamic forces of the nonlinear spring are assumed as

Fuij = keij 5gn(Asij) |Deij|™" (i=fr, Jj=4r). ¢))]

where the subscript ¢ = f,r indicates front and rear while the subscript j = £,r indicates left and right. The A;; is the
deformation of the spring and sgn(-) is the signum function.
The nonlinear damping forces of front and rear suspensions are described by

Feij = csi Ayij GE=fir, j=47), (2)
where Au.-j is the relative velocity between the extremes of the damper. The damping coefficient ¢s; is expressed by
Csui Auij 20 . ;
= T = =), 3
GCsi { Bl Auij <0 (z Lin 3 o7 3)

where Csui and and cgq; are damping coefficients for tension and compression, respectively.
The nonlinear spring force of tire is also simplified as

Fuxij = Kusi SBTI(AusijJ |"'—\‘1.ht.n'j|“wi (i =firn Jj= E,r}. 4

where A;; is the deformation and nyg; is the nonlinear coefficient of the tire spring.
The damping of the tires is assumed to be viscous

Fucij = Cusi Dusij. (5)

where Au,i_,- is the relative velocity of extremes of the model of: tires.
The the road disturbance are expressed as

zgr = Asin(2rft), (6)
zp = Asin(2rft+ ), ()]
zZr = Asin(2rft + a), (8)
zq = Asin(2rft+ a+ ). )]

where o and 3 indicate the time delay of the forcing functions. Thus, the equations of motion can be formulated.
Sprung mass: :

mazs = o s_ﬂ_Fc_{{_Fsr_Fcfr_Fsrf_E:rt_F;lrr_Fcrr_magr (10
i 8
I¢,¢l = (_ F‘s_f! = Fcft +-str+Fcfr — Fart — Ferg + Fors +F¢rr)§(‘.06¢, (11)
Iﬂé = (Faft 3 Fc!t + Fafr + Fcf,-)G.COS G- (Fsr!' + Fcr! < Fsrr =t Fcrr)bcosgv (12)
Unsprung masses:
MysZure = Fspe+ Fope — Fuspe — Fucge — Mugg, (13)
mufiufr . str +.Fcfr - Fus!r = Fuc!r — Myysg, (14)
MuyrZure = Fert + Fert — Fusre — Fuere — Murg, (15)
MurZurr = Farr + Forr — Fuser — Fuerr — Murg. (16)
The forces to the sprung mass in Egs. (10)-(12) can be calculated as
Fype = 100Dk, sgn (Ayse — Dsg) |Duse — Deg™ (17
str = lootn"f-l)ksf Sgn (Aufr ™ A:i,f) |Aufr = As,f’lm-'lr ’ (18)
Fepe = esplage, (19)
Fc_fr == cszufm (20)
Fue = 1000 Dk, sgn (Aure — Ber) [Aure — Der|™ @1
For = lm(n"_—l)ksr sgn (Agrr = Asr) |Aur‘r = Asrln" ’ (22)
Fcrf = carAurh (23)
Forr = Corlurr, (24)
where
Duge = gsin¢—nsin9+z,—zuﬂ, 25)

DNogr = —%sinqﬁ —asinf + z, — 2,4, (26)
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Bue =  5siné+bsind+ 2z — zure, @7)
Ky = -—%sinqb+bsin9+z, — (28)
a meg nar
= 29
Bor {motﬂw-llk,, (2(a - b))] ! ki
b msg mer
A i - " 30
$ {motﬂ-:—l)k,f (2(a+ b))] @D
The forces related to the unsprung mass in Eqgs. (13)-(16) are expressed as
Fusge = 100 ~Vkorsgn (Ausse — Dous) [Busse — Beug|™ (31)
Fus_fr = lm(“!“”ku‘s} Sgn (Ausfr o Asu_l’) |Ausfr = Aaujln“'! 3 32)
Fucft ocrd cuszusfh (33)
Fucfr = CusfDusfr, (34)
Fisre = lm(nr_l)kusr sgn (Aysre — Asur) |Ausr£ - Asurlﬂ“" ) (33)
FI.'IB’"!“ ] Im(nf_ l}kllsr Egn (ausrr - Asu") |Au8fr - Asur‘lnu“ ] (36)
Foere = CuarAusr!'a 37
Fucrr = cusr'Ausr'r- (38)
where
Auspe = zuse — Asin(wt + ), (39)
Aysfr = 2Zufr — Asin(wt), (40)
Ausre = Zurt — ASin(Wt +a+ ﬁ)l (41)
Aysrr =  Zurr — Asin(wt + a), (42)
g mea e
Agur = [mo(n,_:)km (2(a +b) i m"")] ' v
g mgb %
Beus = [wmn;—nk..‘, (2(a s )] : el

III. NUMERICAL RESULTS

Because of strong non-linearity in the differential equations (10)-(16), the dynamic responses of the system is studied
numerically. The frequency-response diagram and Poincaré map were used to trace the chaos [5]. The parameters of the
physic structure of the system is listed in Table I [4] and were used in the numerical study .

The frequency response diagram is often used to predict the forcing frequency which is possible related to chaotic response.
By observing an unstable region in the frequency response diagram and finding the corresponding frequencies, the ones
which are possibly leading to chaotic response can be obtained. Because the dynamic response of the mathematic model
under relatively large forcing amplitude is to be investigated in this research, the amplitude of the forcing function is chosen
as A = 0.08 m which is greater than one used in reference [4].

Fig. 2 represents the frequency response diagrams of the heave, roll and pitch motion of sprung mass and heave motion
of unsprung mass in front-left corner as the forcing frequency of the sinusoid road disturbance is slowly increased and then
slowly decreased. The diagrams were obtained by calculating the responses of the system in the range of 0.01 < f < 15
Hz with an increment of the frequency Af = 0.001 Hz. In Fig. 2(a)~Fig. 2(h), the vertical axis is defined as the maximum
absolute value of the amplitude of the displacement, and the horizontal axis is defined as the frequency of the sinusoid road
disturbance. _

The frequency response diagram of the heave motion for the sprung mass is shown in Figs. 2(a) and (b). As the forcing

TABLE 1
PARAMETERS OF THE SYSTEM

ms 1500 kg Iy 460 kg-m Ig 2160 kg-m Myy 59 kg
Mur 59 kg koy 35000 N/m || kar 38000 Nfm || ngy. nar 1.5

Ceufts Ccufr 1000 N/m/s Cedfes Cedfr 120 N/im/s Ceurts Courr 1000 N'M/s || cedrés Codrr 720 N/m/s
Kusg. kusr 190000 N/m || cysf. Cusr 10 N/m/s ng, ny 1.25 a l4m

b 1.7 m 8 Im
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Fig. 2 Frequency-response diagrams when the forcing frequency f is slowly increased and decreased (A = 0.08 m, 8 = 9°,
a = 58°% 0 < f < 15 Hz): (a),(b) max |z,(¢)]; (c),(d) max |¢(t)[; (e),(f) max [8(2); (g), (h) max |z, ()]

frequency is increasing, two jumps at f = 4.00 Hz, f = 4.45 Hz can be observed. With the increase of the frequency the
oscillation changes into beats between f = 7.55 Hz and f = 8.20 Hz. As shown in Fig. 2(b), there are upward jumps at
f=5.00 Hz and f = 3.30 Hz as the forcing frequency decreases. The beats begin at f = 8.00 Hz and end at f = 7.35 Hz.
An unstable region which does not exist as f is increasing appears in the forcing frequency 3.30 < f < 3.85 Hz.

Since the chaotic motion can not only appear as forcing frequency is within or near the unstable regions with beats, but
also as the frequency is near one where the jump phenomenon is observed, the heave motion of the unsprung mass may
become chaotic as 3.30 < f < 3.85, 7.55 < f < 8.20 and around f = 4.00 Hz or f = 4.45 Hz for some initial conditions.
This result can also be obtained by observing the other frequency response diagrams in Fig. 2.

To confirm the existence of chaotic response, the Poincaré maps as f = 3.4 Hz is given in Fig. 3 which show the strange
attractors and indicate the motion is chaotic. The Fig. 3 shows that the motion of the system in different coordinate can
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Fig. 3 Poincaré maps of chaotic motion of the system (A = 0.08 m, f = 3.4 Hz, = 9°, a = 58°).

become chaotic simultaneously even some motion is small, see Fig. 3(b).

Damping plays an important role in dynamic behavior of a nonlinear system since it can change the response of the
system dramatically. To investigate the effect of damping to chaotic response, the factor of enlargement Dy is defined and
taken as the bifurcation parameter. As Dy is changed, ever damping coefficient is multiplied by D . Therefore the damping
coefficients of the vehicle model are enlarged or reduced by Dy times.

One of the bifurcation diagrams of the system is shown in Fig. 4. They were obtained by plotting the Poincaré points of
the response against D). It is found that the responses of the system are chaotic as 0.5 < Dy < 1.6, which means that the
chaotic response exists even the damping coefficients are reduced to 50% or enlarged to 160%.

IV. CONCLUSIONS

The dynamic responses of a full ground vehicle model which is subjected to sinusoid disturbance with large amplitude are

investigated through numerical simulation. The main conclusions are as follows.

« The chaotic responses exists in the system and the forcing frequencies for inducing chaos are in the unstable regions of
the frequency response diagram.

» Generally, it is considered that the change of system parameters is an easy way of eliminating chaos. However, for
the studied system, the dynamics are not sensitive to variation of damping cocfficicnts if these cocfficients are changed
simultaneously. This result can be an good example to show the complexity of the nonlinear system.

» To avoid the chaotic response in dynamic design of a system, the simplest way is to change the system parameters.
Thus the sensitivity of the system’s parameters to chaos needs to be discussed and this is left for the further research.
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Fig. 4 Bifurcation diagrams obtained by varying damping coefficients of the system Dy (A = 0.08 m, f = 3.4 Hz, # = 9°), a = 58":
(8) z,(2); (b) B(2); (©) B(t); (d) Zuse(t); (€) Zugr(t); () Zure(t), and (8) Zurr(t).
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