LEDを光源とする簡易型PIVの開発

增淵 寿*1, 橋本 康隆*2

Development of simplified PIV system using LED light source

Hisashi MASUBUCHI, Yasutaka HASHIMOTO

This paper proposes an inexpensive simplified particle image velocimetry (PIV) system which uses LED as a light source instead of Laser. For this double-exposed PIV system, a new two-colored LED light sheet (LLS) generator was constructed. With this LLS generator, PIV was applied to measure velocity of two Couette flow around/inside the rotating cylinder. That experimental results show this PIV system has sufficient accuracy to analyze low-speed (up to a few cm/s) simple flow.

KEYWORDS : Particle Image Velocimetry, Flow visualization, LED, Flow Measurements

1. 緒言

1.1 PIV について

PIV とは、Particle Imaging Velocimetry の略 で、流れの可視化画像をもとに流体の速度分布を 求める方法の総称である ¹⁰. PIV は、速度の多点 同時計測が可能で、プローブ等の挿入が必要ない ために流れを乱さないという利点があり、レーザ の高出力化と画像処理技術の進展を追い風に急速 に発達した計測手法である.

しかし、市販の PIV には、高出力のダブルパル スレーザと、このパルス出力と同期できるビデオカ メラが使われており、これらは非常に高価(一般的 な計測システムで数千万円)である.そこで、本研 究では高輝度 LED を光源に使用し、汎用のディジ タルスチルカメラと組み合わせた、安価で学生実験 などにも利用しやすい簡易型 PIV システムの開発 を試みる.

1·2 簡易型 PIV の概要

本研究が対象とする狭義の PIV の一般的な(単 一露光型の)計測手順の概略は、次の通りである 2). ①トレーサ粒子が加えられた流れの中に、レー ザを光源とするシート光を時間差Δt1 で 2 回照射 し、2 枚の可視化画像を取得する. ②コンピュー タを用いて1 枚目の画像を微小領域に分割し、次 にΔt1後の2 枚目の画像内でパターンの似た粒子 分布を探索し、この点における速度ベクトルを得 る.この際のカメラと照明のタイミングを Fig.1(a) に示す.通常のビデオカメラはフレーム間隔が固 定されているため、パルス間隔Δt₁を変更するに は、レーザ光の照射タイミングをカメラのフレー ム切替えと同期させる必要がある(フレームスト ラドリング法と呼ぶ).

これに対し、本研究で開発を試みる PIV では、1 枚の画像に 2 時刻の粒子を記録する多重露光型を 採用する(図 1(b)参照).このとき、2 回照射する LED の色を変えれば(これをカラーPIV と呼ぶ)、 2 時刻の粒子を区別できるため、撮像装置にスチ ルカメラが利用可能となる.得られた 1 枚の可視 化写真を色情報に基づいて 2 枚に分解すれば、こ

Fig.1 Two methods to obtain particle image for PIV.

(a) Single exposed PIV. (b) Double-exposed PIV.

※1 機械工学科 (Dept. of Mechanical Engineering), E-mail:masubuti@oyama-ct.ac.jp

^{※2 2009} 年度機械工学科卒業 現 東京農工大工学部機械システム工学科 3 年生

れ以降の速度ベクトルを求める処理は、通常の PIV と同様に行うことができる.

2. おもな記号

ω	:	11	回転角速度	rad/s
Ν	: 3	容器あるいは円柱の回転速度		\mathbf{rpm}
Di	: [回転円柱の外径	(半径 Ri)	$\mathbf{m}\mathbf{m}$
Do	: F	円筒容器の内径	(半径 Ro)	$\mathbf{m}\mathbf{m}$
Δt_2	: :	シート光のパルン	ス幅	s
Δt_1	: 3	シート光のパルン	ス間隔	S

3. シート光発生装置

3.1 光学系

LED が発生する光は、レーザと比べて光束(放 射束)が劣るだけでなく、指向性の低い拡散光で ある.このため、光シートを形成するには、ビー ムを広げるレーザとは反対の役割をする光学系が 必要となる.そこで、図2に示すシート光発生装 置を自作した.LED の拡散光を3枚の凸レンズで 集光し、ロッドレンズでy方向の厚みが一定とな るシート光に変換するものである.実際には、ロ ッドレンズだけでは十分に薄いシート光にはなら なかったため、シリンドリカルレンズを追加して 設置した.また、ダイクロイックミラーを採用す ることによって、2個のLED が同一の光学系を利 用できるようになり、装置が簡素化されている.

LED の発光のタイミングは,図3に示す2ch 出 カのファンクションジェネレータで制御し,パル ス幅 Δ t₁とパルス間隔 Δ t₂とを自由に設定できる. 一般にLED は応答性が高く,フォトIC を用いた 確認実験³⁾でも応答の遅れは μ sのオーダであっ た.今回のPIV システムでは, Δ t_{1,2}ともmsのオ ーダであるから,この応答遅れは無視してよい.

Fig.2 Schematic of light sheet generator.

最後に、本実験に使用する高輝度 LED(Luxeon[®] Ⅲ Star)の主な仕様 ⁴を表 1 に示す.

Table.1 Specification of LED

Color	Dominant Wavelength	Spectral Half-width	Luminous Flux	Viewing Angle
Green	530 nm	35nm	80 lm	10° *
Red	627 nm	20nm	140 lm	

* with collimator lens

3・2 シート光の計測

はじめに,発生させたシート光の厚さを測定し, 可視化領域を定める.図2のシリンドリカルレン ズの前方の x 軸上にフォト IC (TPS855(F)) を設 置し、これをy方向に上下させてシート光の厚み 方向の照度分布を測定した.計測された照度が, 同一の x 断面での最大照度の 1/2 となる厚さ(半 値幅)をシート光の厚さと定め、その変化を図 4 に示す. シート光はシリンドリカルレンズから 100mm 前方で最小厚み(約 2.0mm)となり,厚 み方向の広がり角は約 2° であった. ここで,可 視化領域のシート光厚さを 3.0mm 以下と仮定す れば、その長さは図4より59.7mmとなる. さら にシート光の幅を目視によって測定したところ, 最小厚みの位置でおおよそ 75mm であった. これ により,可視化領域は最大で約 60mm×75mm と 判断する.

Fig.3 Experimental apparatus for generating pulsed LED light.

the xy-plane. (z=0)

4. PIV システムの検証

4.1 可視化用円筒型水槽

開発した PIV システムの精度を検証するため,速 度分布の解析解を有する容器内流れの速度計測を行 う.実験は、図5に示す円筒型水槽内の2種の流れ に対して実施した.

- 静止した円筒型水槽(Do=95mm)内へ円柱 (Di=20mm)を同軸上に挿入し、N=14.6rpm で等速回転させる.
- 四柱を除去し、円筒型水槽(Do=90mm)を N=12.5rpmで等速回転させる.

このとき、二次元の定常旋廻流れ(ur=0)を仮 定すれば、極座標で表した Navier-Stokes の運動 方程式は式(1)のように簡略化され、これを解けば、 ①および②のクエット流の速度成分 v_{θ} の解析解 が r の関数として、それぞれ(2),(3)式のように得ら れる.

$\frac{d}{dr}\left\{\frac{1}{r}\frac{d}{dr}\left(r \ v_{\theta}\right)\right\} = 0 \dots \dots$
$v_{\theta} = \frac{Ri^2}{Ro^2 - Ri^2} \omega \left\{ -r + \frac{Ro^2}{r} \right\} \dots $
$v_0 = r\omega$ (3)

作動流体は食塩で密度調整を行った水で,予め 直径 75~150μmのトレーサ粒子 (DIAION)を混 濁しておく. この水槽内へ,図2の装置で発生さ

Fig.5 Experimental apparatus to measure the flow between two concentric rotating cylinders. せたパルス状のシート光を水平に照射し,上方か らディジタルー眼レフカメラ(Nikon D100)で撮 影を行う.撮影は暗室内で行い,カメラのシャッ タは開放にする.

4-2 2 重円筒内クエット流れの PIV 計測

撮影した可視化写真の一例(約100万画素)を 図 6(a)に示す. 次に画像処理ソフト (Adobe, photoshop CS) で、この写真からそれぞれ赤・緑 成分の濃度値(輝度値)だけを抽出して2枚のグ レースケール画像を作成する.画像中央付近 40× 40pixel の原画像が(b), 抽出後の 2 枚の画像が (c),(d)である. 抽出後の画像を比較すると, やや不 明瞭ながら、類似した粒子パターンが左から右へ と数 pixel 動いている様子が分かる.次に、2枚の 画像から PIV ソフト (Photron, FLOgraph-PIV) を使って得られた速度分布が図7で、1枚の可視 化画像から,1514 点の有効な速度データが得られ た. 定性的には,理論どおりに円柱付近が最も速 く、半径が大きくなるにつれて次第に速度が低下 する旋廻流れになっている.ただし、円柱近傍で は、方向や大きさが不自然な誤べクトルが発生し ている. 誤ベクトルの発生原因としては、シート 光が円柱表面で反射するために粒子画像が不鮮明 になることや、PIV の検査領域が正方形であるた

- Fig.6 Photograph of flow visualization.
 - (a) Original image.
 - (b) Scale up image. $(40 \times 40 \text{ pixel})$.
 - (c) Extract red luminance level from fig.6(b).
 - (d) Extract green luminance level from fig.6(b).
 - ((a),(b)color image, (c),(d) gray scale image).

めに円形の境界の取扱いが困難であることが挙げ られる.

次に、速度の解析解(式(2))との比較を行ったも のを図8に示す.縦軸は、計測点における流速 V= $\sqrt{u_r^2 + v_{\theta}^2}$ を、回転円柱の周速度で除した無次元 流速を表わす.円柱付近のrが小さい範囲では, 前述した理由により流速のばらつきが多い.また, PIV で得られた速度は解析解に比べて小さく, 異 なる傾向を示している.この原因として、2 重円 筒内流れの不安定性が考えられる. すなわち, こ の流れには式(2)の解析解が存在するが、実際には 不安定性のためにテイラー渦流れが発生し、様々 な流れパターンを引き起こすことが知られている 5. 本実験で計測した流れにおいても、シート光を水 平に照射したときの流跡線が同心円ではなく、鉛 直に照射したときには2次流れの発生を確認して いる.このため、容器内の流れは、式(2)とは異な る速度分布となっている可能性が高く、計測デー タと解析解との不一致が必ずしも PIV の誤差であ

Fig.8 Comparison of velocity distribution for the flow between two concentric rotating cylinders.

るとは限らない. このため, 本例では開発した PIV システムの定量的な評価は差し控える.

4・3 回転円筒内クエット流れの PIV 計測

前節の流れ場自体の問題に対処するため,次に 円柱を取り去り,円筒側を回転させたクエット流 れに対し PIV 計測を行う.この流れは理論的にも 安定であり,式(3)どおりの流れが発生するものと 期待される.図9に PIV によって得られた速度分 布を示す.有効な速度ベクトルの数は 1935 点で, シート光の幅に制約があるため両端の速度ベクト ルは得られていない.円筒に近い外縁部の流速が 大きく,中央付近は遅い旋廻流れになっている. ただし,円筒容器の近傍では図7の場合と同様の 理由により,またシート光の端に近い側では粒子 画像の輝度不足のために,明らかな誤ベクトルも 発生している.

 $(\Delta t_1=50 \text{ms}, \Delta t_2=17 \text{ms})$

測定した速度値と,解析解とを比較したものを 図 10 に示す. r/Ro≥0.8 では容器に近いために流 速にばらつきがみられるが,これ以外では概ね解 析解(3)に近い流速が得られている.この結果より, 本 PIV システムは,このような単純流れの測定で は定量的にも有効に機能するものと判断する.

4・4 PIV システムの注意点

次に、本システムを使用して速度計測を行う際 の注意点について論じる.開発した計測システム の最大の問題は、光源となる高輝度 LED の光束が、 市販の PIV で使用する高出力レーザに比べ極めて 小さいため、シート光が暗いことである.一般的 に、スチルカメラはビデオカメラに比べて感度を 高く設定できるが、輝度値の高い可視化画像を得 るために、次の 2 点の工夫を要した. ①パルス幅 を Δ t2 \geq 10ms と大きくする. ②粒子直径の大きい d \geq 75 μ m のトレーサ粒子を使用する.

①のパルス幅の制約のため、測定可能な流速の 上限には制約が発生する.つまり,速い流れでは、 トレーサ粒子の軌跡が線状になり、加えて(パル ス間隔Δt1も大きくせざるをえないから)粒子の 移動量も大きくなるため、2時刻の画像間のマッ チングが不正確になり、計測精度の低下が懸念さ れる.ただし、本研究で測定対象とした4・3の回 転容器内の流れは、流体要素がせん断・伸縮変形を 受けない単純回転流れであるために、流速を比較 的大きくしても、測定誤差はそれほど大きくなら なかった.この場合でも、最大流速は数 cm/s 程度 と推定される.

②については、Mie 散乱の散乱光の強度が粒子 径の約2乗に比例する²ため、さらに大きな d≥ 250 µ m の粒子を使った実験も行ってみた.しか し、数密度を同一にすると、粒子の投入量が多く なるため、可視化範囲内の光源から遠い側は、手 前の粒子の陰になってしまい、可視化画像の半分 は輝度が低下してしまった.また、粒子の浮上・ 沈降速度は粒子径とともに増大する²ため、大き い粒子を使用する場合には、流体の密度のより正 確な調整が必要となり、これには大変な労力を要 する.このように、高輝度画像の取得を目的とし て、あまりに径の大きな粒子を選択するのは適切 ではないことが分かった.

5. 結言

LED を光源とするシート光発生装置を自作し, これを中心にして,安価な簡易型 PIV システム(多 重露光型カラーPIV)の開発を目指した.その結 果,ディジタルカメラとファンクションジェネレ ータおよび PC ソフトウェアを除けば,数万円で PIV システムを作成できた.次にこれを使用して, 容器内流れに対して PIV 測定を行い,システムの 検証を行った.得られた主な結果を次に示す.

- (1) 自作した光源装置で発生させた LED のシート 光の厚みは 2.0~3.0mm で,最大可視化領域は 約 60×75mm である.
- (2) 開発した PIV システムは、局所的な変動が少なく、かつ流速数 cm/s 以下の低速流れであれば、 定量的にも妥当な速度計測が可能であった.

今後は、このシステムを使って、多くの計測を 実施し、その計測精度の検証を行いたい.また、 計測システムの課題としては、以下の2点が挙げ られる.

- ・シート光発生装置の改良 … 複数の LED (LED アレイ)を用いて幅広いシート光を発生させる.
 可視化領域(幅)の拡張と,照度増加が目的である.
- ・カメラ校正の追加 … 本研究では、物体座標と 像座標(可視化画像内の座標)の関係は、画像内 で一様と近似した.実際には、カメラのレンズ収 差と気液界面における屈折の影響により、両者の 関係は位置の関数となる.計測精度向上のために は、カメラ校正を行って、これらの影響を排除す る必要がある.

参考文献

- 小林敏雄, 岡本孝司, 佐賀徹雄, 機論 B, vol.65, No.629 (1999), pp8-14.
- 2) 可視化情報学会, PIV ハンドブック, 森北出版, (2002).
- 3) 澤村亮祐, 増淵寿, 日本機械学会 関東学生会第 48 回 学生員卒研発表前刷集, vol.2, (2008), pp421-422.
- 4) LUXEON, Technical Datasheet DS45, Power light source Luxeon III Emitter.
- 5) 例えば,古川裕之,渡辺崇,中村育雄,機論 B, vol.68, No.674 (2002),pp2671-2678.

[受理年月日 2010年9月27日]