第ゼロ節点法の適用限界に関する研究

川村 壮司*1

A study about the application limit of the Crack Tip Stress Method.

Takashi KAWAMURA

This paper is the result that application limit of the Crack Tip Stress Method. I fixed crack length and checked relations of the board width. The Crack Tip Stress Method is established regardless of board width.

KEYWORDS: Crack Tip Stress Method, FEM

1. はじめに

第ゼロ節点法は西谷によって提案された,き裂 を有する材料の破壊を予測する強度評価手法であ る.その予測は,き裂先端の厳しさの尺度である 応力拡大係数のみで破壊の予測が可能である.こ のことから,有限要素法,境界要素法など汎用ソ フトを使って応力拡大係数を求める手法が種々提 案されている.第ゼロ節点法はその一つである. 第ゼロ節点法とその他の手法による適用限界の比 較についてはほとんど調べていない.

そこで本研究は、ANSYS という FEM を用いて第 ゼロ節点法をき裂長さを固定し板幅を変化させて 適用し、応力外挿法、変位外挿法と比較検討して 適用限界について調べた。

2. 線形き裂力学の原理

図1は、線形き裂力学の概念を模式的に示した ものである。

線形き裂力学について図1を用いて二次元問題 のモードI型き裂材を例にとり説明する.以下, き裂先端を原点とする.

線形き裂力学は,試験片(1)と実物(2)において, 応力拡大係数K₁が両者で等しいとき,き裂先端付 近の弾性応力場が等しくなり,さらにレスポンス の等価性により弾塑性応力場も等しくなり,した がって試験片と実物で同一現象が生じることを保 証するものである.すなわち,線形き裂力学は応 力拡大係数K₁を厳しさの尺度とするものである.

3. 解析形状および解析条件

図2は,FEM 解析で平面応力条件下に用いた, 中央にき裂を有する帯板の形状と寸法を示してい る.また,寸法は図2に示すとおりである. 図3は,FEM 解析で用いた解析形状に対する要

素分割を示している. 板長を 180mm, き裂長さを

^{*1} 機械工学科(Dept. Mechanical Engineering), E-mail:t-kawamura@oyama-ct.ac.jp

12mm, 板幅を 60mm, 54mm, 48mm, 42mm, 36mm, 30mm, 24mm, 18mm と8段階に変化させた. また, き裂先 端近傍の要素サイズは図 4 に示すように 1/27mm で計算した. なお,計算対象領域は対称性を考慮 して図2の細線を施した1/4の部分に該当してい 3.

図4 計算対象領域A部の詳細

図3計算対象領域の要素分割

4. 第ゼロ節点法の適用限界

ここでは、平面応力条件下において解析し、第 ゼロ節点法をき裂長さを固定し板幅を変化させて 適用し,応力外挿法,変位外挿法,接続外挿法と 比較検討して適用限界について得られる結果につ いて検討する.

表1は、第ゼロ節点法による計算値と厳密解と の誤差を示している.

$\lambda = a / W$	0.2	0.22	0.25	0.28	0.33	0.4	0.5	0.67
σ _y 0,FEM	16.59	16.68	16.82	17.03	17.36	17.95	19.20	22.89
FI,BFM	1.0246	1.0306	1.0391	1.0518	1.0723	1.1089	1.1858	1.4137
FI,appr.	1.0246	1.0306	1.0391	1.0519	1.0724	1.1091	1.1860	1.4140
誤差「%」	0.0000	-0.0023	-0.0046	-0.0086	-0.0092	-0.0179	-0.0214	-0.0239
	λ=0.2を基準として計算							
λ = a / W	0.2	0.22	0.25	0.28	0.33	0.4	0.5	0.67
σy0,FEM	16.59	16.68	16.82	17.03	17.36	17.95	19.20	22.89
FI,BFM	1.0246	1.0306	1.0391	1.0518	1.0723	1.1089	1.1858	1.4137
FI,appr.	1.0244	1.0304	1.0389	1.0517	1.0722	1.1088	1.1858	1.4137
誤差「%」	0.0239	0.0216	0.0192	0.0153	0.0147	0.0060	0.0024	0.0000
	λ=0.67を基準として計算							

表1 第ゼロ節点法による計算値と厳密解との誤差

図5 き裂先端近傍の応力分布

図6 き裂先端近傍の開口変位

これより、λ=0.2を基準とした場合、き裂と板 幅がかなり近くなっても予測精度が 0.02%と非常 に安定している.また、λ=0.67 を基準とした場 合でも、0.02%と非常に安定しているが、途中の 予測精度が少々悪くなっている.これは、基準に 用いた応力値が板幅が狭いために影響が出たもの と思われる.なお、厳密解は体積力法によるもの を用いており計算値が6桁まで収束した値である.

図5は、板幅を変化させたときのき裂先端近傍 の応力分布について示している.縦軸は無次元化 した応力、横軸はき裂先端からの距離である.こ れより、板幅を変化させたときのき裂先端近傍の 応力分布は非常に似ている.よって、線形き裂力 学による解析結果が得られている.

図6は、板幅を変化させたときのき裂先端近傍 の開口変位について示している.縦軸はき裂先端 近傍の開口変位、横軸はき裂先端からの距離であ る.これより、板幅を変化させたときのき裂先端 近傍の開口変位は板幅が狭くなるほど開口量が増 えている.よって、板幅が狭くなるとき裂先端の 状態が厳しくなり応力値が上がっていることがわ かる.

図7 応力外挿法λ=0.2

図8 変位外挿法 1=0.2

図9 応力外挿法λ=0.67

図10 変位外挿法 \ = 0.67

図7と図8は、λ=0.2とλ=0.67のとき、応力 外挿法により、F₁を求めたものである.本来、グ ラフに人が近似直線を入れる手法であるため今回 のようにグラフの近似直線を使うと予測はできな いことがわかる.

図 9 と図 10 は, λ=0.2 と λ=0.67 のとき, 変位 外挿法により, F₁を求めたものである.

応力外挿法と変位外挿法はいずれも誤差が 5% を超えておりF₁を今回の解析では精度よく求められなかった.

5. まとめ

本研究では、線形き裂力学を平面応力条件下で 適用し、第ゼロ節点法をき裂長さを固定し板幅を 変化させて適用し、適用限界について調べたとこ ろ、板幅に影響を受けずに安定した予測をできる のは第ゼロ節点法であることがわかった.

【受理年月日 2013年 9月30日】