破壊力学パラメータと要素分割の関係

川村 壮司*1

Relations of a fracture mechanics parameter and the element division.

Takashi KAWAMURA

This paper is checked the element division and the relations of the error. The shape that I analyzed is three kinds. The result that a way of the element division was important to fracture mechanics. It is necessary to do distance of the element division finely to give analysis precision. Particularly, I am careful about a value of the crack tip when I use FEM.

KEYWORDS: Crack Tip Stress Method, FEM, BFM

1. はじめに

破壊力学パラメータである第ゼロ節点法や、応 力外挿法、変位外挿法、体積力法による数値解析 による手法では要素分割をする必要がある.要素 分割は、数値解析の解析精度を向上させる目的か ら、特殊な要素を提案するなどしているものもあ る.しかし、特殊な要素は使い方が複雑である.

そこで、BFM による厳密解の精度検証を行い、 FEM による要素分割を3段階にして、各種破壊パ ラメータと厳密解との比較を行い精度等について 調べる.

2. 線形き裂力学の原理

図1は、線形き裂力学の概念を模式的に示した

ものである.

線形き裂力学について図1を用いて二次元問題 のモードI型き裂材を例にとり説明する.以下, き裂先端を原点とする.

線形き裂力学は、試験片(1)と実物(2)において、 応力拡大係数 K_Iが両者で等しいとき、き裂先端付 近の弾性応力場が等しくなり、さらにレスポンス の等価性により弾塑性応力場も等しくなり、した がって試験片と実物で同一現象が生じることを保 証するものである.すなわち、線形き裂力学は応 力拡大係数 K_Iを厳しさの尺度とするものである.

3. 解析形状および解析条件

図2は、FEM 解析で平面応力条件下に用いた、 中央にき裂を有する帯板の形状と寸法を示している.また、寸法は図2に示すとおりで板長を180mm、 き裂長さを12mmとした.

^{*1} 機械工学科(Dept. Mechanical Engineering), E-mail:t-kawamura@oyama-ct.ac.jp

図4は,FEM 解析で用いた解析形状に対する要素分割を示している.要素分割は解析の精度に影響するき裂先端近傍を変化させた.そのき裂先端 近傍の要素分割は最小になる部分を1/3mm,1/9mm, 1/27mmの3種類とした.また、き裂先端近傍の最 小要素サイズは図3に示す.なお、計算対象領域 は対称性を考慮して図2の細線を施した1/4の部 分に該当している.

図1線形き裂力学の原理

図2 計算形状および計算対象領域

図3計算対象領域の要素分割の細部

4. 要素分割による解析の誤差

ここでは、まず厳密解に使う体積力法の解析精 度について要素分割数による影響を検証する. そ して、要素分割による影響を調べるために、き裂 先端近傍の要素分割の最小になる部分を 1/3mm、 1/9mm、1/27mm とした 3 種類にたいして、第ゼロ 節点法、応力外挿法、変位外挿法を適用して解析 精度に及ぼす影響について検討する.

表1 体積力法と要素分割の誤差

分割数	FI	誤差
4	1.02444	0.0146
6	1.02455	0.0039
8	1.02458	0.0010
10	1.02458	0.0010
12	1.02459	0.0000
14	1.02459	0.0000
16	1.02459	0.0000

表1は、体積力法による計算値と厳密解との誤 差を示している.体積力法の計算結果と比較した 厳密解は、Isidaによるものを使った.その結果、 体積力法は、分割数が荒い状態でも解析精度の誤 差は 0.001%しかなく,分割数を増やせば誤差はな くなることがわかる.よって,体積力法は厳密解 として利用ができる.なお,この後の厳密解は体 積力法によるものを用いており計算値が6桁まで 収束した値である.

表2は、第ゼロ節点法・応力外挿法・変位外挿 法による計算値と厳密解との誤差を示している.

これよりわかるように、き裂先端近傍の要素分割 を1/3mmとして計算した値は、第ゼロ節点法の厳 密解との誤差は板幅が変化しても0.3%、応力外挿 法の厳密解との誤差は板幅が変化し 1.5%~2.6% 程度,変位外挿法の厳密解との誤差は板幅が変化 し1.4%~1.8%程度となる.き裂先端近傍の要素分 割を1/9mmとして計算した値は,第ゼロ節点法の 厳密解との誤差は板幅が変化しても0.1%,応力外 挿法の厳密解との誤差は板幅が変化し 1.3%~ 2.3%程度,変位外挿法の厳密解との誤差は板幅が 変化し1.4%~1.5%程度となる.き裂先端近傍の要 素分割を1/27mmとして計算した値は,第ゼロ節点 法の厳密解との誤差は板幅が変化しても0.05%,

図4 計算対象領域の要素分割

表2	第ゼロ節点法・	応力外挿法·	・変位外挿法によ	る計算値と	厳密解との誤差
----	---------	--------	----------	-------	---------

λ	C.T.S.M.	S.E.M.	D.E.M
0.2	1.0246*	1.0088	1.0098
0.25	1.0388	1.0228	1.0238
0.4	1.1073	1.0915	1.0937
0.5	1.1825	1.2178	1.1642

要素分割による誤差1/3					
λ	C.T.S.M.	S.E.M.	D.E.M.		
0.2	0.0%*	1.542%	1.444%		
0.25	0.036%	1.578%	1.482%		
0.4	0.186%	1.613%	1.415%		
0.5	0.348%	2.629%	1.888%		

*Standard for corrections

λ	C.T.S.M.	S.E.M.	D.E.M
0.2	1.0246*	1.0388	1.0105
0.25	1.0390	1.0534	1.0247
0.4	1.1086	1.1259	1.0944
0.5	1.1852	1.2144	1.1682

要素分割に。	よる誤差1/9)
C.T.S.M.	S.E.M.	D.E.M.
0.0%*	1.386%	1.376%
0.015%	1.366%	1.395%
0.068%	1.487%	1.352%
0.118%	2.343%	1.551%
	要素分割に、 C.T.S.M. 0.0%* 0.015% 0.068% 0.118%	要素分割による誤差1/9 C.T.S.M. S.E.M. 0.0%* 1.386% 0.015% 1.366% 0.068% 1.487% 0.118% 2.343%

*Standard for corrections

λ	C.T.S.M.	S.E.M.	DEM
0.2	1.0246*	1.0374	1.0360
0.25	1.0391	1.0521	1.0506
0.4	1.1091	1.1231	1.1215
0.5	1.1860	1.2110	1.1998

要素分割による	3誤差1/27

λ	C.T.S.M.	S.E.M.	D.E.M.
0.2	0.0%*	1.249%	1.113%
0.25	0.008%	1.241%	1.097%
0.4	0.026%	1.235%	1.091%
0.5	0.048%	2.056%	1.112%

表3 要素分割による計算値と厳密解との誤差

き裂先端からの距離	低密解	要素	分割別 無次元	:化応力
		1/3	1/9	1/27
6 00	1 00000	1 00000	1 00000	1 00000
633	0.73438	0.81549	0.74633	0.74920
667	0.62100	0.69535	0.63389	0.62571
7 00	D 55462	062642	0.56751	0.55919
7 33	0.50899	0.57723	0.51959	0.51141
7.67	0.47402	0.53915	0.49281	0.48482
800	D.44426	0.50651	0.45692	0.44923
833	0.41621	0.47574	0.42849	0.42108
867	038725	0.44390	0.39923	0.39216

き裂先端からの距離	厳密解	要;	長分割別 あ	美差
		1/3	1/9	1/27
500	1 00000	0 000000	0.00000	0 00000
6.33	0.73438	11.04479	1 62778	2.01876
667	0.62100	11.97306	2 07560	0.75904
700	0 55462	1294518	2 32365	0 82371
7.33	0.50899	13.40760	2 08385	0.47662
7.67	0.47402	13.74126	3 96442	2 27880
800	0.44425	14.01304	2 84928	1.11993
8.33	0.41621	14.30477	2 95064	1.17071
867	038725	14 62742	3 09168	1 26688

図5 き裂先端近傍の応力分布

応力外挿法の厳密解との誤差は板幅が変化し 1.2%~2.0%程度,変位外挿法の厳密解との誤差は 板幅が変化し1.1%程度となる.

表3は、第ゼロ節点法による計算値と厳密解と の誤差を示している.

図5は、体積力法と第ゼロ節点法により求めた 応力分布を示している.縦軸に無次元化応力、横 軸にき裂先端からの距離をとっている.これより、 体積力法から得られた厳密解の応力分布を基準に して考えると、要素分割1/3mmは、厳密解の応力 分布とかなり離れているように見える.また、そ の誤差は、表3からも得られたように、き裂先端 に近いほど11%もある.よって、要素分割1/3mm は、解析には向かない精度となっている.要素分 割1/9mmは、厳密解の応力分布と比べたところ、 ほぼ一致している.また、要素分割1/27mmもまた、 厳密解の応力分布と比べたところ、ほぼ一致している.

これらの結果から,FEM による要素分割は,要素分割 1/9mm 以下にすることはできないことがわかった.ただし,要素分割数を増やせば解析時間

が増えることを考えておく必要がある.

5. 今後の課題

体積力法は厳密解として簡易な要素分割でも十 分な精度を有していることから、今後も弾性応力 状態の解析で使用していく.

また、今後の有限要素法の解析では、切欠きを 有する帯板の解析においても応力分布との解析誤 差を評価する必要がある.弾性応力状態の解析は、 弾塑性応力解析を行うための指針になるため、解 析条件を変えながらデータを集めておく必要があ る.

【受理年月日 2014年 9月29日】