目の粗いグリッド・ボードに正多角形を作図する 初歩的な数学を用いた技法について

玉木 正一*1

About on the techniques that used basic mathematics to draw a regular polygons with simple ruler on large-scale Grid board

Masakazu TAMAKI

We have drawn the special n square shapes(regular n^{th} polygons) by Euclidean geometry methods. But possible n is restricted as the multiple of power of 2 ,special prime numbers, 3,5,17,257,65337,... but they are square-free. If n tends to large , an accumulation error from methods of Euclid ,also grows big. Like in a problem of drafting, one draw regular 64^{th} polygon, but that is an unrealistic demand even if it is for the train courteousness and patience feeling. In case regular n^{th} polygon in an unit circle, we can draw them by diagonal line which join first top z_0 and r^{th} z_r or one side, accompanied accumulated error specially which of the needle of compasses. In contrast, we can get x- coordinate of z_r with necessary precision by a trigonometric function directly numerical value, but it becomes difficult to realize on the coordinated plane. We can improve it by use the method of continued fractions . Finally we adds roughly explanations for the case of regular 17polygon (heptadecagon), regular 257^{th} polygon (diacosipenta-contaheptagon) drawn by Euclid method ,and the table of primitive root modulo p(prime) .

KEYWORDS: regular polygon, continued-fraction, problems of drafting, primitive root Rular and compass, Frobeius permutation, heptadecagon

1 始めに

定規とコンパスを用いた正多角形は、4 ,8 ,16 の様な2の累乗角形、それに3の倍数の入った 3,6,12,24 角形、17,257等の特殊な素数角形が作図可能である。 製図等で、忍耐心、丁寧さを養成する為の、64角形であっても、用具の誤差等の累積誤差で望ましい図形を書くことが出来ない。

本稿では、連分数近似により無理数の近似を用

いて作図し、更に、三角関数、1 の原始根等を 用いた作図法を提示してみる。その際に、エク セル等の表計算ソフト(数式処理ソフトも)を用 いることにより、これらと幾何学の連携を深め ていく。

2. 作図法の成り立ち

平面幾何学は、ナイル川の氾濫により耕地の境界が消滅した事から始まると言われている。

114 玉木 正一

境界の復元のために、縄を張って測量をした。 辺の比が3:4:5 の3角形が直角3角形で あることが すでに知られていた。この手法から、 定規とコンパスを用いたユークリッド幾何学が 始まったと言われている。

以前は、建築、機械等の製図を学ぶ者は、半径 10cmの円内に正32角形、正64角形の作図 課題を与えられていた。 正方形 (正4角形) の

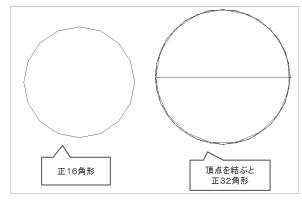
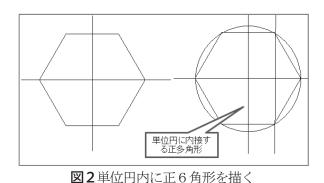


図1 正16角形と32角形の作図

3. よく知られている正多角形

2の累乗以外の正n多角形では、nと素な位置にある頂点を求めて、その辺(又は対角線)を円周上に次々にとって行けば良い。例えば、正6角形では、1辺の長さが半径と同じであるので、次々ととっていけば正6角形を得る。



4. 誤差

定規とコンパスを用いる方法では、線の巾、円の中心点の直径などが誤差の主因となっている。 元々、エジプト時代の測量法にも誤差が含まれて 各角を2等分すると、正8角形が出来る。更に2等分をしていくと、16角形、32角形と進む。この様に単純な方法であるが、32角形あたりになるとコンパスの針で中心、頂点に大きな穴が空き、綺麗な正多角形が描けなくなる。実際、この針の穴が製図の誤差のメインタームになっている。

いた。縄伸びという現象である。現在でも、公図と実測で土地の面積が違う。売買するときには出来るだけ多めに、納税するときには出来るだけ少な目に申告する。その際の言い訳に測量の際に縄が伸びたので、誤差が生じたという。縄での計測の子孫である、

定規とコンパスによる製図は、どんなに技術を 尽くしても、0.1mm.半径10cmの円で、1/1000 程度の誤差が各作業毎に積算されてしまう。加え て、地面は平面でないので、非ユークリッド幾何 学的な補正が必要になる。

縄の張力だけで、十分な精度を持った、直線、平 面、直角を作成するのは事実上不可能である。

5 工業的な低誤差の実現

工業的には、ささげと言う手段をとり、超精度の平面、直線、直角を作成する。

例として、3面擂りという方法で、平面のゲージ を作成する 図を考えてみよう。

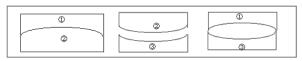


図3 平面ゲージの作成法 誤差10 シッン程度を求める事が出来る。

この様にして超精度の、平面、直線、直角、更に、格子点が作成できる。

6. 正7角形の作図

正7角形を描いてみよう。Cos、又は、sinの値は、エクセルを利用して容易に求めることが出来る。

-6.46228E-15

k	pie	3.14159265	cos	sin
1	2k pie/7	0.8975979	0.623489802	0.781831482
2	2k pie/7	1.7951958	-0.222520934	0.974927912
3	2k pie/7	2.6927937	-0.900968868	0.433883739
4	2k pie/7	3.5903916	-0.900968868	-0.433883739
5	2k pie/7	4.48798951	-0.222520934	-0.974927912
6	2k pie/7	5.38558741	0.623489802	-0.781831482

表1 正7角形の頂点の x座標

コンピュータ画面上に描くならこれでよいのであるが、人間がグリッド平面上に描くには、1/1000 以上の精度で描くのには1000目盛り、10000目盛りの巨大な平面と定規が必要になる。

 $\cos(2\pi/7) = 0.623489801858734$ $\cos(8\pi/7) = -0.900968867902419$

 $\cos(4\pi/7) = -0.222520933956314$ $\cos(10\pi/7) = -0.222520933956315$

 $\cos(6\pi/7) = -0.900968867902419 \quad \cos(12\pi/7) = 0.623489801858733$

cos の性質上、右半分は左と同じで、最初の3個 が簡単な分数になれば作図可能である。

ここで3番目の頂点のx座標を格子点上に求めて みよう。連分数を用いて、規約分数表示すると $\cos(4\pi/7)=-0.222520933956314$ 。

$$\cos(4\pi/7) = -0.222520933956314$$

$$\frac{-1}{-0.222520933956314} = 4.49395920743494$$

$$\frac{1}{4.49395920743494-4} = 2.02445866976113$$

$$\frac{1}{4+\frac{1}{2}} = \frac{2}{9} \qquad \cos(4\pi/7) + \frac{2}{9} \square$$

$$= -0.000298711734092118$$

 $\frac{2}{9}$ はかなりの精度の近似である。。 これをグリッド上に近似するには

$$\begin{vmatrix} 2 & -1 \\ 1 & 4 \end{vmatrix} = 9 \qquad \frac{\begin{vmatrix} 2 & 0 \\ 1 & 1 \end{vmatrix}}{\begin{vmatrix} 2 & -1 \\ 1 & 4 \end{vmatrix}} = \frac{2}{9} \qquad 2x - y = 0$$

$$x + 4y = 1$$

なる連立1次方程式を作図すればよい。

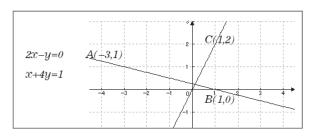


図4 A,B,C,O を結ぶ交点の y 座標が $\frac{2}{9}$ になる

連分数以外でも、ニュートン法を用いて既約分数 表示が出来る。

7. ニュートン法での近似

$$z^7 - 1 = 0$$

$$z^{7}-1=(z-1)(z^{6}+z^{5}+z^{4}+z^{3}+z^{2}+z+1)=0$$

$$z=cos(2\pi/7)+i sin(2\pi/7)$$

$$z^2 = \cos(4\pi/7) + i \sin(4\pi/7)$$

$$z^3 = \cos(6\pi/7) + i \sin(6\pi/7)$$

$$z^4 = \cos(8\pi/7) + i \sin(8\pi/7)$$

$$z^5 = \cos(10\pi/7) + i \sin(10\pi/7)$$

$$z^6 = \cos(12\pi/7) + i \sin(12\pi/7)$$

作図上は

$$z+z^6=2\cos(2\pi/7)$$

$$z^2 + z^5 = 2\cos(4\pi/7)$$

$$z^3 + z^4 = 2\cos(6\pi/7)$$

の近似を求めればよい。

方程式は

$$\frac{z^6 + z^5 + z^4 + z^3 + z^2 + z + 1}{z^3} =$$

$$z^{3}+z^{2}+z+1+\frac{1}{z}+\frac{1}{z^{2}}+\frac{1}{z^{3}}=0$$

と変形できて、

116 玉木 正一

$$x=z+\frac{1}{z}$$
 と置くと
$$x^3-3x+x^2-2+x+1=0$$

と同値になり、その解が

$$2\cos\left(\frac{2k\pi}{7}\right)$$
 $k=1,2,3$

である。

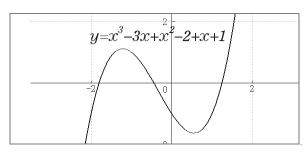


図5
$$y=x^3-3x+x^2-2+x+1$$
 のグラフ

$$x=-2$$
 から始めると既約分数 $-\frac{2}{9}$ を得る。

この場合連分数と同様に近似されるのは、2番目の解の近くで曲がりが0に近いからである。ニュートン法なら関数機能の無い電卓でも求める事が出来る。

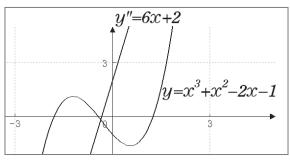


図6 2階微分、曲がりを込めたグラフの表示

8 幾つかの実例

全ての正素数角形について、ニュートン法と連 分数による近似が一致するかと言うと、2階微分 (曲率)が解の近くで0に近くないとうまく成り 立たない。11角形、13角形などでは連分数が 望まれる。

 $\cos(2\pi/11) {=} 0.841253532831181$

$$\frac{1}{0.841253532831181} {=} 1.18870228887428$$

$$\frac{1}{1.18870228887428-1}$$
=5.29935278456656

$$\frac{1}{5.29935278456656-5} = 3.34054016383353$$

$$\frac{1}{3.34054016383353-3} = 2.93651118488579$$

$$0 + \cfrac{1}{1 + \cfrac{1}{5 + \cfrac{1}{3 + \cfrac{1}{3}}}} = \cfrac{53}{63}$$

$$\cos(2\pi/11) - \frac{53}{63} = -0.0000163084386600598$$

$$\begin{pmatrix} 3 & -3 \\ 10 & 11 \end{pmatrix} \ \begin{pmatrix} 3 & -2 \\ 10 & 11 \end{pmatrix} \ \ \begin{matrix} 3x-3y=-2 & 10x+11y=11 \\ y=0.841269841269841 \end{matrix}$$

で 1/100000 の誤差にとどめることが出来る。

9 半径2の円に内接する正多角形

実際の作図は、半径2の円を用いた方が 誤差が少ない、そのためには、ニュートン法と同

じく、
$$x=2\cos\left(\frac{2k\pi}{n}\right)$$
 を用いる。

$$2\cos\left(\frac{4\pi}{13}\right) = 1.13612949346231$$

$$\frac{1}{1.13612949346231-1} = 7.34594667596312$$

$$\frac{1}{7.34594667596312 - 7} = 2.89061890019896$$

$$\frac{1}{2.89061890019896 - 2} = 1.12281470758885$$

$$1 + \frac{1}{7 + \frac{1}{2 + \frac{1}{1}}} = \frac{25}{22}$$

$$2\cos\left(\frac{4\pi}{13}\right) - \frac{25}{22} = -0.000234142901324744$$

19歳のガウスが、夢の中で発見したと言われる正 17角形も、

 $2\cos(8\pi/17)=0.184536718926604$

$$\frac{1}{0.184536718926604} = 5.41897572372971$$

$$\frac{1}{5.41897572372971-5} = 2.38677313114476$$

$$\frac{1}{2.38677313114476-2} = 2.58549500850855$$

$$\frac{1}{2.58549500850855 - 2} = 1.70795649060669$$

$$\frac{1}{1.70795649060669-1} = 1.41251618322341$$

$$\frac{1}{5 + \frac{1}{2 + \frac{1}{1 + \frac{1}{1}}}} = \frac{12}{65}$$

 $2\cos(8\pi/17) - \frac{12}{65} = -0.0000786656887805834$

$$\begin{vmatrix} 5 & 6 \\ -5 & 7 \end{vmatrix} = 65 \quad \begin{vmatrix} 0 & 6 \\ -2 & 7 \end{vmatrix} = 12 \quad \begin{array}{c} 5x + 6y = 0 \\ -5x + 7y = -2 \end{array}$$

の作図で求めることが出来る。

10 17 角形の定規とコンパスによる

作図

単位円内に描かれた正17角形の頂点は 方程式

$$z^{17}$$
-1=(z-1)(z^{16} + z^{15} + z^{14} +.....+ z^2 +z+1)=0
の解になる。

$$z^{16}+z^{15}+z^{14}+\dots+z^{2}+z+1=0$$

は2次拡大を4回繰り返して解く(作図すること の2つに分ける。

になる。)

よく知られているが、平方根の長さの作図を行っ てみよう。

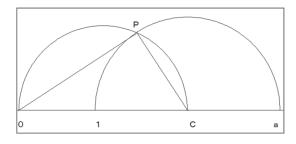


図7方冪(べき)の定理より $\overline{OP}=\sqrt{a}$ となる。

ガロワ置換 $\zeta = cos \frac{2\pi}{17} + i sin \frac{2\pi}{17} \rightarrow \sigma\xi$ を利用して、2次拡大を巧み重ねていく。

表 2 $a^n mod(17)$ の表

	原始根					
乗数	3	4	5	7	8	
	1	1	1	1	1	
1	3	4	5	7	8	
2	9	16	8	15	13	
3	10	13	6	3	2	
4	13	1	13	4	16	
5	5	4	14	11	9	
6	15	16	2	9	4	
7	11	13	10	12	15	
8	16	1	16	16	1	
9	14	4	12	10	8	
10	8	16	9	2	13	
11	7	13	11	14	2	
12	4	1	4	13	16	
13	12	4	3	6	9	
14	2	16	15	8	4	
15	6	13	7	5	15	
16	1	1	1	1	1	

表のように、3は mod(17)で原始根であるから、

$$\begin{split} &1 + \sigma^2 \left(1 + \sigma^2 \left(1 + \sigma^2 \left(1 + \sigma^2 \right) \right) \right) \zeta \\ &= \zeta + \zeta^9 + \zeta^{13} + \zeta^{15} + \zeta^{16} + \zeta^8 + \zeta^4 + \zeta^2 = x_0 \\ &\sigma \left(1 + \sigma^2 \left(1 + \sigma^2 \left(1 + \sigma^2 \left(1 + \sigma^2 \right) \right) \right) \right) \zeta \\ &= \zeta^3 + \zeta^{10} + \zeta^5 + \zeta^{11} + \zeta^{14} + \zeta^7 + \zeta^{12} + \zeta^6 = x_1 \end{split}$$

118 玉木 正一

$$x_0 + x_1 = \zeta + \zeta^2 + \zeta^3 + \zeta^4 + \zeta^5 + \dots + \zeta^{16} = -1$$
 $x_0 \times x_1 = 4(\zeta + \zeta^2 + \zeta^3 + \zeta^4 + \zeta^5 + \dots + \zeta^{16}) = -4$
であるから、
 x_0, x_1 は方程式、 $t^2 + t - 4 = 0$ の解になり、
 $t = -\frac{1}{2} + \frac{1}{2}\sqrt{17}$ となり作図可能。
 $\zeta^3 + \zeta^5 + \zeta^{14} + \zeta^{12} = x_4$ $x_4 + x_5 = x_1$ $\zeta^{10} + \zeta^{11} + \zeta^7 + \zeta^6 = x_5$ $x_4 \times x_5 = -1$ とおく $(1 + \sigma^4(1 + \sigma^4))\zeta = \zeta + \zeta^{13} + \zeta^{16} + \zeta^4 = x_2$ $\sigma^2(1 + \sigma^4(1 + \sigma^4))\zeta = \zeta^9 + \zeta^{15} + \zeta^8 + \zeta^2 = x_3$ とおく $x_2 + x_3 = x_0$ $x_2 x_3 = (\zeta + \zeta^2 + \zeta^3 + \zeta^4 + \zeta^5 + \dots + \zeta^{16}) = -1$
 x_2, x_3 は方程式、 $t^2 - x_0 t - 1 = 0$ の解になり、
 $t = \frac{1}{2}x_0 + \frac{1}{2}\sqrt{x_0^2 + 4}$ 作図可能。 $\zeta^3 + \zeta^5 + \zeta^{14} + \zeta^{12} = x_4$ $x_4 + x_5 = x_1$ $\zeta^{10} + \zeta^{11} + \zeta^7 + \zeta^6 = x_5$ $x_4 x_5 = -1$ とおく $t = \frac{1}{2}x_1 + \frac{1}{2}\sqrt{x_1^2 + 4}$ 作図可能。 $(1 + \sigma^8)\zeta = \zeta^{-4} + \zeta^4 = x_7$ とおく $x_6 + x_7 = x_2$ $x_6 x_7 = x_4$ よって、 $t^2 - x_2 t + x_4 = 0$ の解になる $t = \frac{1}{2}x_2 - \frac{1}{2}\sqrt{x_2^2 - 4x_4}$ は作図可能 $\zeta = x_8$ $\zeta^{16} = \zeta^{-1} = x_9$ とする $x_8 + x_9 = x_6$ $x_8 \times x_9 = 1$ よって、 $t^2 - x_6 t + 1 = 0$ の解になる $t = \frac{1}{2}x_6 + \frac{1}{2}\sqrt{x_6^2 - 4}$ 作図可

以上が、正 17 角形の書き方であるが、方冪の定理とうで、激しくコンパスを使うことになり、 正64角形の作図より、精度は低くなる事が想像

できる。

11 正 257 角形

上のやり方で行けば、257 角形、65537 角形も 定規とコンパスで作図可能であるが、実行は不可 能であろう。ここに、エクセルで計算した

 z^{257} -1=0 のフロベニウス置換の表を掲げる。

表3 $3^n mod(257)$ の表

乗数	原始根	乗数	原始根	乗数	原始根	乗数	原始根
1	3	41	155	81	127	121	51
2	9	42	208	82	124	122	153
3	27	43	110	83	115	123	202
4	81	44	73	84	88	124	92
5	243	45	219	85	7	125	19
6	215	46	143	86	21	126	57
7	131	47	172	87	63	127	171
8	136	48	2	88	189	128	256
9	151	49	6	89	53	129	254
10	196	50	18	90	159	130	248
11	74	51	54	91	220	131	230
12	222	52	162	92	1 46	132	176
13	152	53	229	93	181	133	14
14	199	54	173	94	29	134	42
15	83	55	5	95	87	135	126
16	249	56	15	96	4	136	121
17	233	57	45	97	12	137	106
18	185	58	135	98	36	138	61
19	41	59	1 48	99	1 08	139	183
20	123	60	187	100	67	140	35
21	112	61	47	1 01	201	1 41	105
22	79	62	1 41	1 02	89	1 42	58
23	237	63	166	1 03	10	1 43	174
24	197	64	241	104	30	144	8
25	77	65	209	1 05	90	1 45	24
26	231	66	113	1 06	13	1 46	72
27	179	67	82	1 07	39	1 47	216
28	23	68	246	1 08	117	1 48	134
29	69	69	224	1 09	94	1 49	1 45
30	207	70	158	110	25	150	178
31	107	71	217	111	75	151	20
32	64	72	137	112	225	152	60
33	192	73	154	113	161	153	180
34	62	74	205	114	226	154	26
35	186	75	1 01	115	164	155	78
36	44	76	46	116	235	156	234
37	132	77	138	117	191	157	188
38	139	78	157	118	59	158	50
39	160	79	214	119	177	159	150
40	223	80	128	120	17	160	193

垂数	原始根	乗数	原始根	乗数	原始根	乗数	原始根
161	65	185	212	209	130	233	167
162	195	186	122	210	133	234	244
163	71	187	1 09	211	1 42	235	218
164	213	188	70	212	169	236	140
165	125	189	210	213	250	237	163
166	118	190	116	214	236	238	232
167	97	191	91	215	194	239	182
168	34	192	16	216	68	240	32
169	1 02	193	48	217	204	241	96
170	49	194	144	218	98	242	31
171	147	195	175	219	37	243	93
172	184	196	11	220	111	244	22
173	38	197	33	221	76	245	66
174	114	198	99	222	228	246	198
175	85	199	40	223	170	247	80
176	255	200	120	224	253	248	240
177	251	201	1 03	225	245	249	206
178	239	202	52	226	221	250	104
179	203	203	156	227	149	251	55
180	95	204	211	228	190	252	165
181	28	205	119	229	56	253	238
182	84	206	100	230	168	254	200
183	252	207	43	231	247	255	86
184	242	208	129	232	227	256	1

$$1+....+\sigma^2(1+\sigma^2(1+\sigma^2(1+\sigma^2)))\zeta=x_0$$

$$\sigma(1+....+\sigma^2(1+\sigma^2(1+\sigma^2(1+\sigma^2))))\zeta=x_1$$
 と置き、 17 角形と同じ作業を繰り返すと、作図可能である。

12 追加、正9角形

角の3等分は定規とコンパスでは出来ない。 従って、正9角形もコンパスを用いて作成することは出来ない。

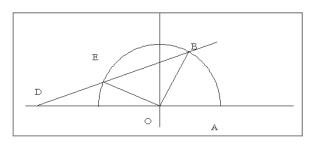


図8 ∠AOB を3等分する

円周上にDE=r=OAになるようにEをとる。

して、3角形を更に3等分して行く事で 正9角形は描けるが、この方法は定規とコンパス の正しい使い方と認められていない。

連分数近似では

 $\cos(2\pi/9) = 0.766044443118978$

$$\frac{1}{0.766044443118978} = 1.30540728933228$$

$$\frac{1}{1.30540728933228-1} = 3.2743160852065$$

$$\frac{1}{3.2743160852065 - 3} = 3.645429684691$$

$$\frac{1}{3.645429684691-3} = 1.54935545066966$$

$$\frac{1}{1.54935545066966-1} = 1.82031505973229$$

$$0 + \frac{1}{1 + \frac{1}{3 + \frac{1}{1 + \frac{1}{2}}}} = \frac{36}{47}$$

 $\cos(2\pi/9) - \frac{36}{47} = 0.0000869963104673717$

$$\begin{vmatrix} \begin{pmatrix} 3 & -5 \\ 4 & 9 \end{vmatrix} = 47 \quad \begin{vmatrix} \begin{pmatrix} 4 & -5 \\ 0 & 9 \end{vmatrix} = 36$$

3*x*-5*y*=4 4*x*+9*y*=0 となる。

13 最後に

簡単な様に見えて、正多角形を描くのは以外と 難しい。特に正17角形の技法は、高速フーリエ 変換の技法に似ている点が、面白い。 この点についてのご存知の方には、お教え頂きた

【受理年月日 2016年 9月30日】