科目名	エンジニアリング・	英語科目名	Introduction		Engineering
	イントロダクション		Fundament	als	
開講年度・学期	平成 27 年度・前期	対象学科・専攻・学年	電気電子創造工学科LR 1年次		
授業形態	講義+演習	必修 or 選択	必修		
単位数	1 単位	単位種類	履修単位 (30h)		
担当教員	久保和良	居室(もしくは所属)	電々棟 4 階		
電話	内線261	E-mail	kubo@小山高専ドメイン		
			授業到達目標との対応		
授業の到達目標			小山高専の	学習•教育到達	JABEE 基準
			教育方針	目標(JABEE)	
1. 電気電子創造工学科で学ぶ内容を鳥瞰し、特にシステム・情報・エネルギー・			(2)		
コンピュータについて概要を説明できること。					
2. 技術者の立場とJABEE、技術者倫理、製造物責任、技術が社会に与える			(2) 🔾		
インパクトなどについて自分の意見を説明できること。			(1)		
3. ハードウェアの基礎とソフトウェアの基礎を学び、プログラムの実行が行え			(4) 🔾		
ることと、部品素子の性	(5)				
4. 電気電子創造工学科	(6)				

れること、およびプレゼンテーションができること。 各到達目標に対する達成度の具体的な評価方法

1について、簡単な設問に答えること。2について、中間試験で事実と意見を記述形式で回答すること。 3について、カラーコード試験に合格すること、4について、報告書とプレゼンで評価を受けること。

評価方法

1について、中間試験で合否を判断するが、日ごろのレポートで合否判断できる場合は試験を行わないことがある。 2について、中間試験で合否判定する。 3について、ハードウェアはカラーコード試験等により判断し、ソフトウェアは実行結果を見て判定する。 4について、 $1 \cdot 2 \cdot 3$ 全て合格した者で報告書を提出した者に対しプレゼンテーション試験を実施し、ここまで達成した場合 60点を与える。グループPBLプレゼンテーションになる可能性がある。 さらにプレゼンテーションの教員評価 20点、学生同士の評価 20点満点で加算し、最終評価とする。

授業内容

- ※おおむね次の内容を学びます。理解度や要望を受けて時間を増減したり、項目を入れ替えたりすることがあります。
- 1.5年間で学ぶ内容の鳥瞰と、システム・情報等の理解(概ね4週) ガイダンス、履修上の注意、シラバスの確認、合格水準と基本用語の説明など 学科の科目概説と、学科の成り立ち、システム・エネルギー・情報などの定義とコンピュータの仕組み
- 2. 技術者の立場について(概ね3週) チャレンジャー号事件、APECエンジニア、JABEE、技術者倫理、製造物責任、 技術が社会に与えるインパクト
- 3. ハードウェアとソフトウェアの基礎(概ね5週) 回路素子、電圧と電流、直列と並列、交流と直流、半導体素子、論理回路、カラーコード コンピュータの処理入門、C言語の例題とコンパイル、実行
- 4. 抄録とプレゼンテーション(概ね3週) 抄録の書き方、プレゼンテーションの方法と実施、自己評価と他者の評価、発表会の運営

キーワード	システム,情報,コンピュータ,技術者倫理,ハード,ソフト,報告書, プレゼンテーション
教科書	(1)後閑哲也: 作る・できる/基礎入門 電子工作の素, 技術評論社(2007) (2)学生便覧
参考書	参考書 分野が広すぎて,数冊に特定できません。関連する高学年科目の教科書などを薦めますが,「この内容を詳しく知りたい」と申し出てくれれば適宜紹介します。遠慮なく質問してください。

カリキュラム中の位置づけ

前年度までの関連科目	中学校での理科, 数学, 技術		
現学年の関連科目	エンジニアリングスキル,コンピュータ入門		
次年度以降の関連科目	エンジニアリングエシックス,全ての専門科目,実験科目		

連絡事項

- 1. 概ね講義 1 時間+演習 1 時間、場合によっては宿題を出しますので、自力で解いて興味を深めてください。
- 2. 講義は理解を高めるように単元ごとに完結するように実施します. 宿題や課題等により, 総合的に学修時間は補償しますが, 毎回の授業時間に長短があり, 終了時刻は一定しないことを理解して下さい.
- 3.この授業では自由課題の発表会を実施します. 期末試験時の発表会は 200 分を超える長丁場となることを, 事前に理解して参加して下さい.

シラバス作成年月日 2015年2月27日