科目名	機械工学実験Ⅱ	英語科目名	Experiment of	Mechanical Engi	neering I
開講年度•学期	平成 27 年・後期	対象学科・専攻・学年	機械工学科 4 4	Ŧ	
授業形態	実験	必修 or 選択	必修		
単位数	1 単位	単位種類	学修単位(451	n)	
担当教員	機械工学科各教員	居室(もしくは所属)	専攻科棟 4F		
電話	内線 205 (那須)	E-mail	ynasu@小山高専ドメイン		
			授業道	達成目標との対応	
授業の到達目標			小山高専の	学習·教育到達	JABEE 基準
			教育方針	目標(JABEE)	
実験の各テーマの目的と内容とを理解し、基本的な実験を正確に実施できること、			2	В	d-2
1. 騒音レベルの測定と周波数分析とを行い、騒音問題について理解を深め、適用					d-3
できること.			е		
2. 管内の風速をピトー管で測定し、管内速度分布と Re との関係を理解し適用で					g
きること.			h		
3. 管内流の圧力損失を活	則定し,流体の粘性によるエ			i	
用できること					
4. 代表的な流体機械でる					
ること					
5. 炭素量の違いによって,炭素鋼材料の組織がどのように異なるかを説明できる					
6. 機械用材料の熱処理を実際に行ない、焼入れの効果を説明できること。 7. 代表的な熱機関であるガソリン機関について性能試験を行い、適用できること。					
TO DELIN O' ME INCIPAL TO DE					
8. 製品の表面精度を支配					
こと.					
による硬さ試 験方法を習得し、適用できること。 10. 旋盤による切削加工時の切削抵抗特性を、実験を通して理解し適用できること。					
	ゖの切削抵抗特性を、美験を選 エ時の切削抵抗特性を、実験				
11. トリルによる切削加-	上时の切削抵抗特性を、美歌				

各到達目標に対する達成度の具体的な評価方法

目標達成 1~11:授業中の実験内容および報告書と口頭試問の内容で評価し、60%以上理解していることを確認する.

評価方法

実験内容と参加態度、提出された報告書と口頭試問の内容で評価する.

各実験担当教員の評価点の平均をもって、最終的な評価点とする.

授業内容

- O. 機械工学実験ガイダンス
- 1. 騒音分析(山下)
- 2. 風速測定(山下)
- 3. 円管の抵抗損失(増淵)
- 4. 遠心ポンプの性能試験(増淵)
- 5. 材料組織の観察の仕方(北條)
- 6. 炭素鋼の熱処理(北條)
- 7. ガソリン機関の性能試験(生井)
- 8. 表面粗さ測定(矢島)
- 9. 硬さ測定(原田)
- 10. 旋盤の切削抵抗測定(古谷)
- 11. ドリルの切削抵抗測定(田中)

予備日(レポートまとめ)を含む

1~11. 概ね, 実験内容の説明 ⇒ 実験 ⇒ 実験のまとめ・課題の説明 ⇒ 報告書の作成 ⇒ ロ頭試問 を実施する.

() 内は実験担当者を表す. キーワード 熱力学, 水力学, 材料学, 機械加工, 計測工学

教科書	自作テキスト			
参考書	特に指定しない			
カリキュラム中の位置づけ				
前年度までの関連科目		機械工作法,材料学,材料力学		
現学年の関連科目		熱力学,水力学,電気工学概論		
次年度以降の関連科目		熱機関、流体機械、材料強度学、メカトロニクス実験、卒業研究		

連絡事項

機械工学実験 I は**必合格科目**である

実験前 … テキストを一読し、次回の実験内容を理解しておく.

授業時 … 指導教員の指示にしたがって、手際よく正確に実験を行なう.

実験後 ··· 速やかに報告書を作成し、<u>指示された期限内に必ず報告書を提出</u>して口頭試問を受ける。報告書の提出がない場合や要求された口頭試問を受けない場合は、評価なしとする。

シラバス作成年月日 平成 27年2月20日