(学修単位)

(学修単位)					
科目名	システム同定論	英語科目名	System Identification		
開講年度・学期	平成28年度後期	対象学科・専攻・ 学年	電子制御工学専攻 1・2年		
授業形態	講義	必修 or 選択	選択		
単位数 担当教員	2 単位 笠原雅人	単位種類 居室 (もしくは所	学修単位(講義A)		
		属)	電電棟 3 階		
電話 内線 263		E-mail		kasahara@小山高専ドメイン名	
授業の到達目標				・業の到達目標との対応 学習・教育到達 目標(JABEE) 	JABEE 基 準
自動制御を行う上で、対象となるシステムのモデルを理解する必要が ④ A				A	d-1
ある. このとき基礎 と	となる事項(古典制御と野	見代制御、パラメトリッ			
クモデルとノンパラメトリックモデル、時系列データからスペクトル					
密度への変換) に関して説明が出来ること.					
各到達目標に対する達成度の具体的な評価方法					
毎週の報告書で確認を	を行う. 				
評価方法 気調の報告書 に中間	少眠~♪ ト ァットン せいき 4 m ラ ト ン	粉ラトn 亜加・			
毎週の報告書と中間試験および定期試験の点数 授業内容			日本の評価する。 授業内容に対する自学自習項目 		自学自習時間
1. 動的システム			線形空間・内積空間、古典制御・現代制御につい		
2. 動的システムとシステム同定			てまとめる. 2階の微分方程式を解く. テキストの演習問題 1 をおこなう		
3. 同定の基本的な手順 1			現立 現立 現立 現立 現立 現立 現立 現立		
3. 円定の季本的は丁順 1		てまとめる	てまとめる		
4. 同定の基本的手順2			SN 比, 白色雑音, 演算誤差, サンプリング周期と バンド幅の関係についてまとめる		
5. 同定入力の選定1			テキストの演習問題3をおこなう		
6. 同定入力の選定 2		伝達関数を状態空間 求める	伝達関数を状態空間に変形し、その時間応答を 求める		
7. LTI システム		テキストの表4.3	テキストの表4.3についてまとめる		
8. ノンパラメトリックモデル		パラメトリック, ノ まとめる	パラメトリック, ノンパラメトリックモデルについて まとめる		
9. ノンパラメトリックモデルの同定			テキストの式 (6.1) から (6.13) を導く		
10. パラメトリックモデル		ニュートンラプソン	ニュートンラプソン法について具体的な計算を行う		
11. パラメトリックモデルの同定1		漸近安定, 平衡点に	漸近安定, 平衡点についてまとめる		
12. パラメトリックモデルの同定2		授業の進行に合わせ	授業の進行に合わせて課題を出す		
13. パラメトリックモデルの同定3		授業の進行に合わせ	授業の進行に合わせて課題を出す		
14. 状態空間モデル		授業の進行に合わせ	授業の進行に合わせて課題を出す		4
15. モデルの選定と妥当性		授業の進行に合わせ	授業の進行に合わせて課題を出す		
キーワード	動的システム 同定 λ	力 同定宝歸 線形時不	変システム	自学自習時間合計 ボード線図 ARX モデ	60 ル
教科書		J. 同定実験、線形時不変システム、ボード線図、ARX モデル こる制御のためのシステム同定」東京電機大学出版局			
参考書			, ,, = , /10/.		
カリキュラム中の位置づけ 前年度までの関連科目		制御工学Ⅰ,制御工学Ⅱ,計測工学Ⅰ,計測工学Ⅱ			
現学年の関連科目					
次年度以降の関連科目					
連絡事項					
シラバス作成年月日	平成28年2月18日	作成			
ノノハヘト以十万口	下水40千4月10日	I F/A			